Skip to content

surenderthakran/gomind

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


GoMind

Build Status GoDoc codecov Go Report Card License: GPL v3

Installation

go get github.com/surenderthakran/gomind

About

GoMind is a neural network library written entirely in Go. It only supports a single hidden layer (for now). The network learns from a training set using back-propagation algorithm.

Some of the salient features of GoMind are:

  • Supports following activation functions:
  • Smartly estimates ideal number of hidden layer neurons (if a count is not given during model configuration) for given input and output sizes.
  • Uses Mean Squared Error function to calculate error while back propagating.

Note: To understand the basic functioning of back-propagation in neural networks, one can refer to my blog here.

Usage

package main

import (
	"github.com/singhsurender/gomind"
)

func main() {
	trainingSet := [][][]float64{
		[][]float64{[]float64{0, 0}, []float64{0}},
		[][]float64{[]float64{0, 1}, []float64{1}},
		[][]float64{[]float64{1, 0}, []float64{1}},
		[][]float64{[]float64{1, 1}, []float64{0}},
	}

	mind, err := gomind.New(&gomind.ModelConfiguration{
		NumberOfInputs:                    2,
		NumberOfOutputs:                   1,
		NumberOfHiddenLayerNeurons:        16,
		HiddenLayerActivationFunctionName: "relu",
		OutputLayerActivationFunctionName: "sigmoid",
	})
	if err != nil {
		return nil, fmt.Errorf("unable to create neural network. %v", err)
	}

	for i := 0; i < 500; i++ {
		rand := rand.Intn(4)
		input := trainingSet[rand][0]
		output := trainingSet[rand][1]

		if err := mind.LearnSample(input, output); err != nil {
			mind.Describe(true)
			return nil, fmt.Errorf("error while learning from sample input: %v, target: %v. %v", input, output, err)
		}

		actual := mind.LastOutput()
		outputError, err := mind.CalculateError(output)
		if err != nil {
			mind.Describe(true)
			return nil, fmt.Errorf("error while calculating error for input: %v, target: %v and actual: %v. %v", input, output, actual, err)
		}

		outputAccuracy, err := mind.CalculateAccuracy(output)
		if err != nil {
			mind.Describe(true)
			return nil, fmt.Errorf("error while calculating error for input: %v, target: %v and actual: %v. %v", input, output, actual, err)
		}

		fmt.Println("Index: %v, Input: %v, Target: %v, Actual: %v, Error: %v, Accuracy: %v\n", i, input, output, actual, outputError, outputAccuracy)
	}
}

API Documentation

The documentation for various methods exposed by the library can be found at: https://godoc.org/github.com/surenderthakran/gomind

About

A simplistic Neural Network Library in Go

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published