-
Notifications
You must be signed in to change notification settings - Fork 1.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #185 from stanford-oval/costorm-integration
Costorm integration
- Loading branch information
Showing
45 changed files
with
5,191 additions
and
270 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,241 @@ | ||
""" | ||
Co-STORM pipeline powered by GPT-4o/4o-mini and Bing search engine. | ||
You need to set up the following environment variables to run this script: | ||
- OPENAI_API_KEY: OpenAI API key | ||
- OPENAI_API_TYPE: OpenAI API type (e.g., 'openai' or 'azure') | ||
- AZURE_API_BASE: Azure API base URL if using Azure API | ||
- AZURE_API_VERSION: Azure API version if using Azure API | ||
- BING_SEARCH_API_KEY: Biang search API key; BING_SEARCH_API_KEY: Bing Search API key, SERPER_API_KEY: Serper API key, BRAVE_API_KEY: Brave API key, or TAVILY_API_KEY: Tavily API key | ||
Output will be structured as below | ||
args.output_dir/ | ||
log.json # Log of information-seeking conversation | ||
report.txt # Final article generated | ||
""" | ||
|
||
import os | ||
import json | ||
from argparse import ArgumentParser | ||
from knowledge_storm.collaborative_storm.engine import CollaborativeStormLMConfigs, RunnerArgument, CoStormRunner | ||
from knowledge_storm.collaborative_storm.modules.callback import LocalConsolePrintCallBackHandler | ||
from knowledge_storm.lm import OpenAIModel, AzureOpenAIModel | ||
from knowledge_storm.logging_wrapper import LoggingWrapper | ||
from knowledge_storm.rm import YouRM, BingSearch, BraveRM, SerperRM, DuckDuckGoSearchRM, TavilySearchRM, SearXNG | ||
from knowledge_storm.utils import load_api_key | ||
|
||
|
||
def main(args): | ||
load_api_key(toml_file_path='secrets.toml') | ||
lm_config: CollaborativeStormLMConfigs = CollaborativeStormLMConfigs() | ||
openai_kwargs = { | ||
"api_key": os.getenv("OPENAI_API_KEY"), | ||
"api_provider": "openai", | ||
"temperature": 1.0, | ||
"top_p": 0.9, | ||
"api_base": None, | ||
} if os.getenv('OPENAI_API_TYPE') == 'openai' else { | ||
"api_key": os.getenv("AZURE_API_KEY"), | ||
"temperature": 1.0, | ||
"top_p": 0.9, | ||
"api_base": os.getenv("AZURE_API_BASE"), | ||
"api_version": os.getenv("AZURE_API_VERSION"), | ||
} | ||
|
||
ModelClass = OpenAIModel if os.getenv('OPENAI_API_TYPE') == 'openai' else AzureOpenAIModel | ||
# If you are using Azure service, make sure the model name matches your own deployed model name. | ||
# The default name here is only used for demonstration and may not match your case. | ||
gpt_4o_mini_model_name = 'gpt-4o-mini' | ||
gpt_4o_model_name = 'gpt-4o' | ||
if os.getenv('OPENAI_API_TYPE') == 'azure': | ||
openai_kwargs['api_base'] = os.getenv('AZURE_API_BASE') | ||
openai_kwargs['api_version'] = os.getenv('AZURE_API_VERSION') | ||
|
||
# STORM is a LM system so different components can be powered by different models. | ||
# For a good balance between cost and quality, you can choose a cheaper/faster model for conv_simulator_lm | ||
# which is used to split queries, synthesize answers in the conversation. We recommend using stronger models | ||
# for outline_gen_lm which is responsible for organizing the collected information, and article_gen_lm | ||
# which is responsible for generating sections with citations. | ||
question_answering_lm = ModelClass(model=gpt_4o_model_name, max_tokens=1000, **openai_kwargs) | ||
discourse_manage_lm = ModelClass(model=gpt_4o_model_name, max_tokens=500, **openai_kwargs) | ||
utterance_polishing_lm = ModelClass(model=gpt_4o_model_name, max_tokens=2000, **openai_kwargs) | ||
warmstart_outline_gen_lm = ModelClass(model=gpt_4o_model_name, max_tokens=500, **openai_kwargs) | ||
question_asking_lm = ModelClass(model=gpt_4o_model_name, max_tokens=300, **openai_kwargs) | ||
knowledge_base_lm = ModelClass(model=gpt_4o_model_name, max_tokens=1000, **openai_kwargs) | ||
|
||
lm_config.set_question_answering_lm(question_answering_lm) | ||
lm_config.set_discourse_manage_lm(discourse_manage_lm) | ||
lm_config.set_utterance_polishing_lm(utterance_polishing_lm) | ||
lm_config.set_warmstart_outline_gen_lm(warmstart_outline_gen_lm) | ||
lm_config.set_question_asking_lm(question_asking_lm) | ||
lm_config.set_knowledge_base_lm(knowledge_base_lm) | ||
|
||
topic = input('Topic: ') | ||
runner_argument = RunnerArgument( | ||
topic=topic, | ||
retrieve_top_k=args.retrieve_top_k, | ||
max_search_queries=args.max_search_queries, | ||
total_conv_turn=args.total_conv_turn, | ||
max_search_thread=args.max_search_thread, | ||
max_search_queries_per_turn=args.max_search_queries_per_turn, | ||
warmstart_max_num_experts=args.warmstart_max_num_experts, | ||
warmstart_max_turn_per_experts=args.warmstart_max_turn_per_experts, | ||
warmstart_max_thread=args.warmstart_max_thread, | ||
max_thread_num=args.max_thread_num, | ||
max_num_round_table_experts=args.max_num_round_table_experts, | ||
moderator_override_N_consecutive_answering_turn=args.moderator_override_N_consecutive_answering_turn, | ||
node_expansion_trigger_count=args.node_expansion_trigger_count) | ||
logging_wrapper = LoggingWrapper(lm_config) | ||
callback_handler = LocalConsolePrintCallBackHandler() if args.enable_log_print else None | ||
|
||
# Co-STORM is a knowledge curation system which consumes information from the retrieval module. | ||
# Currently, the information source is the Internet and we use search engine API as the retrieval module. | ||
match args.retriever: | ||
case 'bing': | ||
rm = BingSearch(bing_search_api=os.getenv('BING_SEARCH_API_KEY'), k=runner_argument.retrieve_top_k) | ||
case 'you': | ||
rm = YouRM(ydc_api_key=os.getenv('YDC_API_KEY'), k=runner_argument.retrieve_top_k) | ||
case 'brave': | ||
rm = BraveRM(brave_search_api_key=os.getenv('BRAVE_API_KEY'), k=runner_argument.retrieve_top_k) | ||
case 'duckduckgo': | ||
rm = DuckDuckGoSearchRM(k=runner_argument.retrieve_top_k, safe_search='On', region='us-en') | ||
case 'serper': | ||
rm = SerperRM(serper_search_api_key=os.getenv('SERPER_API_KEY'), query_params={'autocorrect': True, 'num': 10, 'page': 1}) | ||
case 'tavily': | ||
rm = TavilySearchRM(tavily_search_api_key=os.getenv('TAVILY_API_KEY'), k=runner_argument.retrieve_top_k, include_raw_content=True) | ||
case 'searxng': | ||
rm = SearXNG(searxng_api_key=os.getenv('SEARXNG_API_KEY'), k=runner_argument.retrieve_top_k) | ||
case _: | ||
raise ValueError(f'Invalid retriever: {args.retriever}. Choose either "bing", "you", "brave", "duckduckgo", "serper", "tavily", or "searxng"') | ||
|
||
costorm_runner = CoStormRunner(lm_config=lm_config, | ||
runner_argument=runner_argument, | ||
logging_wrapper=logging_wrapper, | ||
rm=rm, | ||
callback_handler=callback_handler) | ||
|
||
# warm start the system | ||
costorm_runner.warm_start() | ||
|
||
# Below is an example of how users may interact with Co-STORM to seek information together | ||
# In actual deployment, we suggest allowing the user to decide whether to observe the agent utterance or inject a turn | ||
|
||
# observing Co-STORM LLM agent utterance for 5 turns | ||
for _ in range(1): | ||
conv_turn = costorm_runner.step() | ||
print(f"**{conv_turn.role}**: {conv_turn.utterance}\n") | ||
|
||
# active engaging by injecting your utterance | ||
your_utterance = input('Your utterance: ') | ||
costorm_runner.step(user_utterance=your_utterance) | ||
|
||
# continue observing | ||
conv_turn = costorm_runner.step() | ||
print(f"**{conv_turn.role}**: {conv_turn.utterance}\n") | ||
|
||
# generate report | ||
costorm_runner.knowledge_base.reogranize() | ||
article = costorm_runner.generate_report() | ||
|
||
# save results | ||
os.makedirs(args.output_dir, exist_ok=True) | ||
|
||
# Save article | ||
with open(os.path.join(args.output_dir, "report.md"), "w") as f: | ||
f.write(article) | ||
|
||
# Save logging | ||
log_dump = costorm_runner.dump_logging_and_reset() | ||
with open(os.path.join(args.output_dir, "log.json"), "w") as f: | ||
json.dump(log_dump, f, indent=2) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = ArgumentParser() | ||
# global arguments | ||
parser.add_argument('--output-dir', type=str, default='./results/co-storm', | ||
help='Directory to store the outputs.') | ||
parser.add_argument('--retriever', type=str, choices=['bing', 'you', 'brave', 'serper', 'duckduckgo', 'tavily', 'searxng'], | ||
help='The search engine API to use for retrieving information.') | ||
# hyperparameters for co-storm | ||
parser.add_argument( | ||
'--retrieve_top_k', | ||
type=int, | ||
default=10, | ||
help='Retrieve top k results for each query in retriever.' | ||
) | ||
parser.add_argument( | ||
'--max_search_queries', | ||
type=int, | ||
default=2, | ||
help='Maximum number of search queries to consider for each question.' | ||
) | ||
parser.add_argument( | ||
'--total_conv_turn', | ||
type=int, | ||
default=20, | ||
help='Maximum number of turns in conversation.' | ||
) | ||
parser.add_argument( | ||
'--max_search_thread', | ||
type=int, | ||
default=5, | ||
help='Maximum number of parallel threads for retriever.' | ||
) | ||
parser.add_argument( | ||
'--max_search_queries_per_turn', | ||
type=int, | ||
default=3, | ||
help='Maximum number of search queries to consider in each turn.' | ||
) | ||
parser.add_argument( | ||
'--warmstart_max_num_experts', | ||
type=int, | ||
default=3, | ||
help='Max number of experts in perspective-guided QA during warm start.' | ||
) | ||
parser.add_argument( | ||
'--warmstart_max_turn_per_experts', | ||
type=int, | ||
default=2, | ||
help='Max number of turns per perspective during warm start.' | ||
) | ||
parser.add_argument( | ||
'--warmstart_max_thread', | ||
type=int, | ||
default=3, | ||
help='Max number of threads for parallel perspective-guided QA during warm start.' | ||
) | ||
parser.add_argument( | ||
'--max_thread_num', | ||
type=int, | ||
default=10, | ||
help=("Maximum number of threads to use. " | ||
"Consider reducing it if you keep getting 'Exceed rate limit' errors when calling the LM API.") | ||
) | ||
parser.add_argument( | ||
'--max_num_round_table_experts', | ||
type=int, | ||
default=2, | ||
help='Max number of active experts in round table discussion.' | ||
) | ||
parser.add_argument( | ||
'--moderator_override_N_consecutive_answering_turn', | ||
type=int, | ||
default=3, | ||
help=('Number of consecutive expert answering turns before the moderator overrides the conversation.') | ||
) | ||
parser.add_argument( | ||
'--node_expansion_trigger_count', | ||
type=int, | ||
default=10, | ||
help='Trigger node expansion for nodes that contain more than N snippets.' | ||
) | ||
|
||
# Boolean flags | ||
parser.add_argument( | ||
'--enable_log_print', | ||
action='store_true', | ||
help='If set, enable console log print.' | ||
) | ||
|
||
main(parser.parse_args()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,10 @@ | ||
from .storm_wiki.engine import ( | ||
STORMWikiLMConfigs, | ||
STORMWikiRunnerArguments, | ||
STORMWikiRunner, | ||
) | ||
from .storm_wiki import * | ||
from .collaborative_storm import * | ||
from .encoder import * | ||
from .interface import * | ||
from .lm import * | ||
from .rm import * | ||
from .utils import * | ||
from .dataclass import * | ||
|
||
__version__ = "0.2.8" | ||
__version__ = "1.0.0" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
from .modules import * | ||
from .engine import * |
Oops, something went wrong.