Skip to content

Commit

Permalink
[TTS] Add STFT and SI-SDR loss to audio codec recipe (NVIDIA#7468)
Browse files Browse the repository at this point in the history
* [TTS] Add STFT and SI-SDR loss to audio codec recipe

Signed-off-by: Ryan <[email protected]>

* [TTS] Fix STFT resolution

Signed-off-by: Ryan <[email protected]>

* [TTS] Fix training metric logging

Signed-off-by: Ryan <[email protected]>

* [TTS] Add docstring to mel and stft losses

Signed-off-by: Ryan <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Signed-off-by: Ryan <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Signed-off-by: Sasha Meister <[email protected]>
  • Loading branch information
2 people authored and ssh-meister committed Oct 10, 2023
1 parent 25e86ab commit d4b6a75
Show file tree
Hide file tree
Showing 8 changed files with 508 additions and 93 deletions.
170 changes: 170 additions & 0 deletions examples/tts/conf/audio_codec/audio_codec_24000.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
# This config contains the default values for training 24khz audio codec model
# If you want to train model on other dataset, you can change config values according to your dataset.
# Most dataset-specific arguments are in the head of the config file, see below.

name: EnCodec

max_epochs: ???
# Adjust batch size based on GPU memory
batch_size: 16
# When doing weighted sampling with multiple manifests, this defines how many training steps are in an epoch.
# If null, then weighted sampling is disabled.
weighted_sampling_steps_per_epoch: null

# Dataset metadata for each manifest
# https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/tts/data/vocoder_dataset.py#L39-L41
train_ds_meta: ???
val_ds_meta: ???

log_ds_meta: ???
log_dir: ???

# Modify these values based on your sample rate
sample_rate: 24000
train_n_samples: 24000
down_sample_rates: [2, 4, 5, 8]
up_sample_rates: [8, 5, 4, 2]
# The number of samples per encoded audio frame. Should be the product of the down_sample_rates.
# For example 2 * 4 * 5 * 8 = 320.
samples_per_frame: 320

model:

max_epochs: ${max_epochs}
steps_per_epoch: ${weighted_sampling_steps_per_epoch}

sample_rate: ${sample_rate}
samples_per_frame: ${samples_per_frame}

mel_loss_l1_scale: 15.0
mel_loss_l2_scale: 0.0
stft_loss_scale: 15.0
time_domain_loss_scale: 0.0

# Probability of updating the discriminator during each training step
# For example, update the discriminator 2/3 times (2 updates for every 3 batches)
disc_updates_per_period: 2
disc_update_period: 3

# All resolutions for reconstruction loss, ordered [num_fft, hop_length, window_length]
loss_resolutions: [
[32, 8, 32], [64, 16, 64], [128, 32, 128], [256, 64, 256], [512, 128, 512], [1024, 256, 1024], [2048, 512, 2048]
]
mel_loss_dims: [5, 10, 20, 40, 80, 160, 320]
mel_loss_log_guard: 1.0
stft_loss_log_guard: 1.0

train_ds:
dataset:
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset
weighted_sampling_steps_per_epoch: ${weighted_sampling_steps_per_epoch}
sample_rate: ${sample_rate}
n_samples: ${train_n_samples}
min_duration: 1.01
max_duration: null
dataset_meta: ${train_ds_meta}

dataloader_params:
batch_size: ${batch_size}
drop_last: true
num_workers: 4

validation_ds:
dataset:
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset
sample_rate: ${sample_rate}
n_samples: null
min_duration: null
max_duration: null
trunc_duration: 10.0 # Only use the first 10 seconds of audio for computing validation loss
dataset_meta: ${val_ds_meta}

dataloader_params:
batch_size: 8
num_workers: 2

# Configures how audio samples are generated and saved during training.
# Remove this section to disable logging.
log_config:
log_dir: ${log_dir}
log_epochs: [10, 50]
epoch_frequency: 100
log_tensorboard: false
log_wandb: false

generators:
- _target_: nemo.collections.tts.parts.utils.callbacks.AudioCodecArtifactGenerator
log_audio: true
log_encoding: true
log_dequantized: true

dataset:
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset
sample_rate: ${sample_rate}
n_samples: null
min_duration: null
max_duration: null
trunc_duration: 15.0 # Only log the first 15 seconds of generated audio.
dataset_meta: ${log_ds_meta}

dataloader_params:
batch_size: 4
num_workers: 2

audio_encoder:
_target_: nemo.collections.tts.modules.encodec_modules.HifiGanEncoder
down_sample_rates: ${down_sample_rates}

audio_decoder:
_target_: nemo.collections.tts.modules.encodec_modules.SEANetDecoder
up_sample_rates: ${up_sample_rates}

vector_quantizer:
_target_: nemo.collections.tts.modules.encodec_modules.ResidualVectorQuantizer
num_codebooks: 8

discriminator:
_target_: nemo.collections.tts.modules.encodec_modules.MultiResolutionDiscriminatorSTFT
resolutions: [[128, 32, 128], [256, 64, 256], [512, 128, 512], [1024, 256, 1024], [2048, 512, 2048]]

# The original EnCodec uses hinged loss, but squared-GAN loss is more stable
# and reduces the need to tune the loss weights or use a gradient balancer.
generator_loss:
_target_: nemo.collections.tts.losses.audio_codec_loss.GeneratorSquaredLoss

discriminator_loss:
_target_: nemo.collections.tts.losses.audio_codec_loss.DiscriminatorSquaredLoss

optim:
_target_: torch.optim.Adam
lr: 3e-4
betas: [0.5, 0.9]

sched:
name: ExponentialLR
gamma: 0.998

trainer:
num_nodes: 1
devices: 1
accelerator: gpu
strategy: ddp_find_unused_parameters_true
precision: 32 # Vector quantization only works with 32-bit precision.
max_epochs: ${max_epochs}
accumulate_grad_batches: 1
enable_checkpointing: False # Provided by exp_manager
logger: false # Provided by exp_manager
log_every_n_steps: 100
check_val_every_n_epoch: 10
benchmark: false

exp_manager:
exp_dir: null
name: ${name}
create_tensorboard_logger: true
create_checkpoint_callback: true
create_wandb_logger: false
checkpoint_callback_params:
monitor: val_loss
resume_if_exists: false
resume_ignore_no_checkpoint: false
Original file line number Diff line number Diff line change
Expand Up @@ -36,17 +36,23 @@ model:
sample_rate: ${sample_rate}
samples_per_frame: ${samples_per_frame}

mel_loss_scale: 5.0
mel_loss_l1_scale: 1.0
mel_loss_l2_scale: 1.0
stft_loss_scale: 0.0
time_domain_loss_scale: 0.1

# Probability of updating the discriminator during each training step
# For example, update the discriminator 2/3 times (2 updates for every 3 batches)
disc_updates_per_period: 2
disc_update_period: 3

# All resolutions for mel reconstruction loss, ordered [num_fft, hop_length, window_length]
mel_loss_resolutions: [
# All resolutions for reconstruction loss, ordered [num_fft, hop_length, window_length]
loss_resolutions: [
[32, 8, 32], [64, 16, 64], [128, 32, 128], [256, 64, 256], [512, 128, 512], [1024, 256, 1024], [2048, 512, 2048]
]
mel_loss_dims: [64, 64, 64, 64, 64, 64, 64]
mel_loss_log_guard: 1E-5
stft_loss_log_guard: 1.0

train_ds:
dataset:
Expand Down
Loading

0 comments on commit d4b6a75

Please sign in to comment.