-
Notifications
You must be signed in to change notification settings - Fork 1
Performance tests for the scheduler #5
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…n in SingleCoreMockBackend when killTask is unsupported
…n in SingleCoreMockBackend when killTask is unsupported
|
as of 10a83cc, on my laptop: |
|
Some updates on the slow scheduling with lots of nodes:
|
## What changes were proposed in this pull request?
Implements `eval()` method for expression `AssertNotNull` so that we can convert local projection on LocalRelation to another LocalRelation.
### Before change:
```
scala> import org.apache.spark.sql.catalyst.dsl.expressions._
scala> import org.apache.spark.sql.catalyst.expressions.objects.AssertNotNull
scala> import org.apache.spark.sql.Column
scala> case class A(a: Int)
scala> Seq((A(1),2)).toDS().select(new Column(AssertNotNull("_1".attr, Nil))).explain
java.lang.UnsupportedOperationException: Only code-generated evaluation is supported.
at org.apache.spark.sql.catalyst.expressions.objects.AssertNotNull.eval(objects.scala:850)
...
```
### After the change:
```
scala> Seq((A(1),2)).toDS().select(new Column(AssertNotNull("_1".attr, Nil))).explain(true)
== Parsed Logical Plan ==
'Project [assertnotnull('_1) AS assertnotnull(_1)#5]
+- LocalRelation [_1#2, _2#3]
== Analyzed Logical Plan ==
assertnotnull(_1): struct<a:int>
Project [assertnotnull(_1#2) AS assertnotnull(_1)#5]
+- LocalRelation [_1#2, _2#3]
== Optimized Logical Plan ==
LocalRelation [assertnotnull(_1)#5]
== Physical Plan ==
LocalTableScan [assertnotnull(_1)#5]
```
## How was this patch tested?
Unit test.
Author: Sean Zhong <[email protected]>
Closes apache#14486 from clockfly/assertnotnull_eval.
## What changes were proposed in this pull request?
Implements Every, Some, Any aggregates in SQL. These new aggregate expressions are analyzed in normal way and rewritten to equivalent existing aggregate expressions in the optimizer.
Every(x) => Min(x) where x is boolean.
Some(x) => Max(x) where x is boolean.
Any is a synonym for Some.
SQL
```
explain extended select every(v) from test_agg group by k;
```
Plan :
```
== Parsed Logical Plan ==
'Aggregate ['k], [unresolvedalias('every('v), None)]
+- 'UnresolvedRelation `test_agg`
== Analyzed Logical Plan ==
every(v): boolean
Aggregate [k#0], [every(v#1) AS every(v)#5]
+- SubqueryAlias `test_agg`
+- Project [k#0, v#1]
+- SubqueryAlias `test_agg`
+- LocalRelation [k#0, v#1]
== Optimized Logical Plan ==
Aggregate [k#0], [min(v#1) AS every(v)#5]
+- LocalRelation [k#0, v#1]
== Physical Plan ==
*(2) HashAggregate(keys=[k#0], functions=[min(v#1)], output=[every(v)#5])
+- Exchange hashpartitioning(k#0, 200)
+- *(1) HashAggregate(keys=[k#0], functions=[partial_min(v#1)], output=[k#0, min#7])
+- LocalTableScan [k#0, v#1]
Time taken: 0.512 seconds, Fetched 1 row(s)
```
## How was this patch tested?
Added tests in SQLQueryTestSuite, DataframeAggregateSuite
Closes apache#22809 from dilipbiswal/SPARK-19851-specific-rewrite.
Authored-by: Dilip Biswal <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
Introduces the new Shuffle Writer API. Ported from bloomberg#5.
## What changes were proposed in this pull request? This PR aims at improving the way physical plans are explained in spark. Currently, the explain output for physical plan may look very cluttered and each operator's string representation can be very wide and wraps around in the display making it little hard to follow. This especially happens when explaining a query 1) Operating on wide tables 2) Has complex expressions etc. This PR attempts to split the output into two sections. In the header section, we display the basic operator tree with a number associated with each operator. In this section, we strictly control what we output for each operator. In the footer section, each operator is verbosely displayed. Based on the feedback from Maryann, the uncorrelated subqueries (SubqueryExecs) are not included in the main plan. They are printed separately after the main plan and can be correlated by the originating expression id from its parent plan. To illustrate, here is a simple plan displayed in old vs new way. Example query1 : ``` EXPLAIN SELECT key, Max(val) FROM explain_temp1 WHERE key > 0 GROUP BY key HAVING max(val) > 0 ``` Old : ``` *(2) Project [key#2, max(val)apache#15] +- *(2) Filter (isnotnull(max(val#3)apache#18) AND (max(val#3)apache#18 > 0)) +- *(2) HashAggregate(keys=[key#2], functions=[max(val#3)], output=[key#2, max(val)apache#15, max(val#3)apache#18]) +- Exchange hashpartitioning(key#2, 200) +- *(1) HashAggregate(keys=[key#2], functions=[partial_max(val#3)], output=[key#2, max#21]) +- *(1) Project [key#2, val#3] +- *(1) Filter (isnotnull(key#2) AND (key#2 > 0)) +- *(1) FileScan parquet default.explain_temp1[key#2,val#3] Batched: true, DataFilters: [isnotnull(key#2), (key#2 > 0)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp1], PartitionFilters: [], PushedFilters: [IsNotNull(key), GreaterThan(key,0)], ReadSchema: struct<key:int,val:int> ``` New : ``` Project (8) +- Filter (7) +- HashAggregate (6) +- Exchange (5) +- HashAggregate (4) +- Project (3) +- Filter (2) +- Scan parquet default.explain_temp1 (1) (1) Scan parquet default.explain_temp1 [codegen id : 1] Output: [key#2, val#3] (2) Filter [codegen id : 1] Input : [key#2, val#3] Condition : (isnotnull(key#2) AND (key#2 > 0)) (3) Project [codegen id : 1] Output : [key#2, val#3] Input : [key#2, val#3] (4) HashAggregate [codegen id : 1] Input: [key#2, val#3] (5) Exchange Input: [key#2, max#11] (6) HashAggregate [codegen id : 2] Input: [key#2, max#11] (7) Filter [codegen id : 2] Input : [key#2, max(val)#5, max(val#3)#8] Condition : (isnotnull(max(val#3)#8) AND (max(val#3)#8 > 0)) (8) Project [codegen id : 2] Output : [key#2, max(val)#5] Input : [key#2, max(val)#5, max(val#3)#8] ``` Example Query2 (subquery): ``` SELECT * FROM explain_temp1 WHERE KEY = (SELECT Max(KEY) FROM explain_temp2 WHERE KEY = (SELECT Max(KEY) FROM explain_temp3 WHERE val > 0) AND val = 2) AND val > 3 ``` Old: ``` *(1) Project [key#2, val#3] +- *(1) Filter (((isnotnull(KEY#2) AND isnotnull(val#3)) AND (KEY#2 = Subquery scalar-subquery#39)) AND (val#3 > 3)) : +- Subquery scalar-subquery#39 : +- *(2) HashAggregate(keys=[], functions=[max(KEY#26)], output=[max(KEY)apache#45]) : +- Exchange SinglePartition : +- *(1) HashAggregate(keys=[], functions=[partial_max(KEY#26)], output=[max#47]) : +- *(1) Project [key#26] : +- *(1) Filter (((isnotnull(KEY#26) AND isnotnull(val#27)) AND (KEY#26 = Subquery scalar-subquery#38)) AND (val#27 = 2)) : : +- Subquery scalar-subquery#38 : : +- *(2) HashAggregate(keys=[], functions=[max(KEY#28)], output=[max(KEY)apache#43]) : : +- Exchange SinglePartition : : +- *(1) HashAggregate(keys=[], functions=[partial_max(KEY#28)], output=[max#49]) : : +- *(1) Project [key#28] : : +- *(1) Filter (isnotnull(val#29) AND (val#29 > 0)) : : +- *(1) FileScan parquet default.explain_temp3[key#28,val#29] Batched: true, DataFilters: [isnotnull(val#29), (val#29 > 0)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp3], PartitionFilters: [], PushedFilters: [IsNotNull(val), GreaterThan(val,0)], ReadSchema: struct<key:int,val:int> : +- *(1) FileScan parquet default.explain_temp2[key#26,val#27] Batched: true, DataFilters: [isnotnull(key#26), isnotnull(val#27), (val#27 = 2)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp2], PartitionFilters: [], PushedFilters: [IsNotNull(key), IsNotNull(val), EqualTo(val,2)], ReadSchema: struct<key:int,val:int> +- *(1) FileScan parquet default.explain_temp1[key#2,val#3] Batched: true, DataFilters: [isnotnull(key#2), isnotnull(val#3), (val#3 > 3)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp1], PartitionFilters: [], PushedFilters: [IsNotNull(key), IsNotNull(val), GreaterThan(val,3)], ReadSchema: struct<key:int,val:int> ``` New: ``` Project (3) +- Filter (2) +- Scan parquet default.explain_temp1 (1) (1) Scan parquet default.explain_temp1 [codegen id : 1] Output: [key#2, val#3] (2) Filter [codegen id : 1] Input : [key#2, val#3] Condition : (((isnotnull(KEY#2) AND isnotnull(val#3)) AND (KEY#2 = Subquery scalar-subquery#23)) AND (val#3 > 3)) (3) Project [codegen id : 1] Output : [key#2, val#3] Input : [key#2, val#3] ===== Subqueries ===== Subquery:1 Hosting operator id = 2 Hosting Expression = Subquery scalar-subquery#23 HashAggregate (9) +- Exchange (8) +- HashAggregate (7) +- Project (6) +- Filter (5) +- Scan parquet default.explain_temp2 (4) (4) Scan parquet default.explain_temp2 [codegen id : 1] Output: [key#26, val#27] (5) Filter [codegen id : 1] Input : [key#26, val#27] Condition : (((isnotnull(KEY#26) AND isnotnull(val#27)) AND (KEY#26 = Subquery scalar-subquery#22)) AND (val#27 = 2)) (6) Project [codegen id : 1] Output : [key#26] Input : [key#26, val#27] (7) HashAggregate [codegen id : 1] Input: [key#26] (8) Exchange Input: [max#35] (9) HashAggregate [codegen id : 2] Input: [max#35] Subquery:2 Hosting operator id = 5 Hosting Expression = Subquery scalar-subquery#22 HashAggregate (15) +- Exchange (14) +- HashAggregate (13) +- Project (12) +- Filter (11) +- Scan parquet default.explain_temp3 (10) (10) Scan parquet default.explain_temp3 [codegen id : 1] Output: [key#28, val#29] (11) Filter [codegen id : 1] Input : [key#28, val#29] Condition : (isnotnull(val#29) AND (val#29 > 0)) (12) Project [codegen id : 1] Output : [key#28] Input : [key#28, val#29] (13) HashAggregate [codegen id : 1] Input: [key#28] (14) Exchange Input: [max#37] (15) HashAggregate [codegen id : 2] Input: [max#37] ``` Note: I opened this PR as a WIP to start getting feedback. I will be on vacation starting tomorrow would not be able to immediately incorporate the feedback. I will start to work on them as soon as i can. Also, currently this PR provides a basic infrastructure for explain enhancement. The details about individual operators will be implemented in follow-up prs ## How was this patch tested? Added a new test `explain.sql` that tests basic scenarios. Need to add more tests. Closes apache#24759 from dilipbiswal/explain_feature. Authored-by: Dilip Biswal <[email protected]> Signed-off-by: Wenchen Fan <[email protected]>
This code probably doesn't belong in Spark (at least, it doesn't have a nice home there presently), so for now just opening this as a central place to discuss.
Some crude performance tests for the scheduler using apache#8559
In these tests, you setup a mock backend, and run as many simulated jobs as possible in 10 seconds. This lets you compare the performance of the scheduler with different simulated backends. Eg., what happens when there are 1000 nodes? What about when one executor is bad?
I've tried to design things so that the mocking doesn't get in the way of measuring profile, while still allowing enough flexibility. Would definitely appreciate a second pair of eyes, in any case.
So far I've just been running this manually in sbt, using the "-z" option to limit to some comparisons, eg.
Some observations so far:
scheduling is sloooooooooow when there are lots of executors.EDIT: see note below, this is now explained, but leaving discussion here. (this is true even before any of the blacklist changes are in place). on my laptop anyway, it starts to drop off dramatically when there are around 200 nodes (800 executors in my setup). Almost all the time is spent intaskScheduler.resourceOffers. I am pretty certain the slowdown is not coming from the mock setup -- it doesn't care how many nodes there are. The only part of it which does scale is that tasks will get queued up for how many slots there are -- but scheduling is fast even if I have one "super executor" with 20K cores. The code shown here includes the new blacklist mechanism, but the numbers are basically the same either way.To be clear -- the super node has about 5x as many cores as the 550 node cluster, yet the scheduling is > 30x slower on the 550 node cluster.
I don't fully understand why this is yet, but when there are failures, the advanced blacklist strategy is significantly slower than the "single task" strategy. (Note that before there are any failures, it is just as fast). Here its 2x slower on a small example, but with more tasks it can easily be > 5x slowerresults running on my laptop using 456f578
In particular, note how much faster the runs are when (1) we use the advanced blacklist (2) all the bad executors are on one node and (3) there are no nodes with just one bad executor (the run named "COMPARE D bad host with advanced blacklist (12 seconds, 608 milliseconds)")
taskScheduler.resourceOffers, so it doesn't make any real difference.