-
Notifications
You must be signed in to change notification settings - Fork 705
Closed
Labels
Description
Is your feature request related to a problem? Please describe.
Pattern recognition in user behavior data is frequently performed by DiDi's data scientists to help the decision makers better understand the dynamics of demand and supply.
Describe the solution you'd like
Autoencoder is desired as it is a data compression algorithm that can help extract the patterns in data.
Code Snippet
nfeat=144
encoding_dim = 2
#layers number
input_dim = tf.keras.Input(shape=(144,))
#encoded1 = tf.keras.layers.Dense(100, activation=tf.compat.v2.keras.activations.relu, name='encoded1')(input_dim)
#encoded1 = tf.keras.layers.Dense(100, activation='relu', name='encoded1')(input_dim)
encoded2 = tf.keras.layers.Dense(7, activation='relu', name='encoded2')(input_dim)
#decoded1 = tf.keras.layers.Dense(100, activation='relu', name='decoded1')(encoded2)
decoded2 = tf.keras.layers.Dense(144, activation='relu', name='decoded2')(encoded2)
model = tf.keras.Model(inputs=input_dim, outputs=decoded2)
model.summary()
model.compile("adam",
loss='mean_squared_error',
metrics=['accuracy'])
history = model.fit(x,x,epochs=EPOCHES,
batch_size=BATCH_SIZE,
verbose=1)
encoded_layer_model = tf.keras.Model(inputs=model.input,
outputs=model.get_layer('encoded2').output)
x_encoded = encoded_layer_model.predict(x)