Skip to content
This repository has been archived by the owner on Jan 8, 2023. It is now read-only.
/ trickster Public archive

Library and experiments for attacking machine learning in discrete domains

License

Notifications You must be signed in to change notification settings

spring-epfl/trickster

Repository files navigation

Trickster

trickster

Travis Docs

Library and experiments for attacking machine learning in discrete domains using graph search.

See the documentation on Readthedocs, or jump directly to the guide.

Setup

Library

Install the trickster library as a Python package:

pip install -e git+git://github.com/spring-epfl/trickster#egg=trickster

Note that trickster requires Python 3.6.

Experiments

Python packages

Install the required Python packages:

pip install -r requirements.txt
System packages

On Ubuntu, you need these system packages:

apt install parallel unzip
Datasets

To download the datasets, run this:

make data

The datasets include:

Citing

This is an accompanying code to the paper "Evading classifiers in discrete domains with provable optimality guarantees" by B. Kulynych, J. Hayes, N. Samarin, and C. Troncoso, 2018. Cite as follows:

@article{KulynychHST18,
  author    = {Bogdan Kulynych and
               Jamie Hayes and
               Nikita Samarin and
               Carmela Troncoso},
  title     = {Evading classifiers in discrete domains with provable optimality guarantees},
  journal   = {CoRR},
  volume    = {abs/1810.10939},
  year      = {2018},
  url       = {http://arxiv.org/abs/1810.10939},
  archivePrefix = {arXiv},
  eprint    = {1810.10939},
}

Acknowledgements

This work is funded by the NEXTLEAP project within the European Union’s Horizon 2020 Framework Programme for Research and Innovation (H2020-ICT-2015, ICT-10-2015) under grant agreement 688722.

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •