Torch7 FFI bindings for NVIDIA cuDNN (R5) kernels!
Modules are API compatible their nn
equivalents. Fully unit-tested against nn
implementations.
Conversion between nn
and cudnn
is available through cudnn.convert
function.
- Install cuDNN (version R5 EA)
- Have at least CUDA 7.0
- Have
libcudnn.so
in your library path ($LD_LIBRARY_PATH) (Install cuDNN it from https://developer.nvidia.com/cuDNN ) - Instead of the previous step, you can copy the library files into /usr/local/cuda/lib64/ or to the corresponding folders in CUDA directory
-- All inputs have to be 3D or 4D(batch-mode), except ReLU, Tanh, Sigmoid, and BatchNormalization
cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW = 1], [dH = 1], [padW = 0], [padH = 0], [groups = 1])
cudnn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
cudnn.SpatialAveragePooling(kW, kH, dW, dH, padW, padH)
-- the pointwise functions take an additional optional argument. if inplace=true then they do operations in-place without using any extra memory for themselves
cudnn.ReLU(inplace[=false])
cudnn.ClippedReLU(ceiling, inplace[=false])
cudnn.Tanh(inplace[=false])
cudnn.Sigmoid(inplace[=false])
-- SoftMax can be run in fast mode or accurate mode. Default is accurate mode.
cudnn.SoftMax(fastMode [= false]) -- SoftMax across each image (just like nn.SoftMax)
cudnn.LogSoftMax() -- LogSoftMax across each image (just like nn.LogSoftMax)
cudnn.SpatialSoftMax(fastMode [= false]) -- SoftMax across feature-maps (per spatial location)
cudnn.SpatialLogSoftMax() -- LogSoftMax across feature-maps (per spatial location)
cudnn.VolumetricSoftMax(fastMode [= false]) -- SoftMax across feature-maps (per spatial location)
cudnn.VolumetricLogSoftMax() -- LogSoftMax across feature-maps (per spatial location)
cudnn.SpatialCrossEntropyCriterion() -- A spatial version of LogSoftMax + ClassNLLCriterion in one shot
cudnn.VolumetricCrossEntropyCriterion() -- A volumetric version of LogSoftMax + ClassNLLCriterion in one shot
-- Batch Normalization
cudnn.BatchNormalization(nFeature, eps, momentum, affine) -- same arguments as https://github.com/torch/nn/blob/master/doc/simple.md#nn.BatchNormalization
cudnn.SpatialBatchNormalization(nFeature, eps, momentum, affine)
cudnn.VolumetricBatchNormalization(nFeature, eps, momentum, affine)
-- Volumetric inputs (4D or 5D batched mode)
cudnn.VolumetricConvolution(nInputPlane, nOutputPlane, kT, kW, kH, dT, dW, dH, padT, padW, padH)
cudnn.VolumetricMaxPooling(kT, kW, kH, dT, dW, dH, padT, padW, padH)
cudnn.VolumetricAveragePooling(kT, kW, kH, dT, dW, dH, padT, padW, padH)
-- Recurrent Modules
-- All inputs have to be 3D. Accepts input of seqLength x batch x inputDim, or batch x seqLength x inputDim if batchFirst set to true.
cudnn.RNNReLU(inputDim, outputDim, numberOfLayers, [batchFirst = false])
cudnn.RNNTanh(inputDim, outputDim, numberOfLayers, [batchFirst = false])
cudnn.LSTM(inputDim, outputDim, numberOfLayers, [batchFirst = false])
cudnn.GRU(inputDim, outputDim, numberOfLayers, [batchFirst = false])
cudnn.BLSTM(inputDim, outputDim, numberOfLayers, [batchFirst = false])
There are two globally availabe modes useful for tuning performance:
require 'cudnn'
cudnn.benchmark = true -- uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms.
-- If this is set to false, uses some in-built heuristics that might not always be fastest.
by default cudnn.benchmark
is set to false
. Setting to true
will improve performance, at the expense of using more
memory. The input shape should be the same for each batch, otherwise autotune will re-run for each batch,
causing a huge slow-down.
cudnn.fastest = true -- this is like the :fastest() mode for the Convolution modules,
-- simply picks the fastest convolution algorithm, rather than tuning for workspace size
by default, cudnn.fastest
is set to false
. You should set to true
if memory is not an issue, and you
want the fastest performance
cudnn.verbose = true -- this prints out some more verbose information useful for debugging
by default, cudnn.verbose
is set to false
.
Conversion is done by cudnn.convert
function which takes a network and backend arguments and goes over
network modules recursively substituting equivalents. No memory copy is done, just metatables are swapped.
If you don't want to convert all modules you can pass a function as the third argument to cudnn.convert
.
It will be called at each step, with a module that is currently converted. It is meant to exclude
modules i.e. if it returns true
, they will be left untouched, otherwise they will be subject to conversion.
Note that you cannot do backward pass when using cuDNN and when your model has batch normalization layers and is in evaluate mode.
net = nn.Sequential()
net:add(nn.SpatialConvolution(3,96,11,11,3,3))
net:add(nn.ReLU())
cudnn.convert(net, cudnn)
print(net)
net = nn.Sequential()
net:add(nn.SpatialConvolution(3,96,11,11,3,3))
net:add(nn.ReLU())
cudnn.convert(net, cudnn, function(module)
return torch.type(module):find('ReLU')
end)
print(net)
will result in:
nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.SpatialConvolution(3 -> 96, 11x11, 3,3)
(2): cudnn.ReLU
}
nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.SpatialConvolution(3 -> 96, 11x11, 3,3)
(2): nn.ReLU
}
For version CuDNN R1, checkout the branch R1 For version CuDNN R2, checkout the branch R2 For version CuDNN R3, checkout the branch R3 For version CuDNN R4, checkout the branch R4