This repository includes several tools:
- ov2py
- ovdiff
- ov2svg
- ovstat
They all are available as command line scripts after installation. See usage details for each tool below.
You need to have OpenVINO installed, including OpenVINO Python API. The installation script of the tool doesn't install it.
pip install git+https://github.com/slyalin/openvino_devtools.git
Python tool that converts OpenVINO Model into a pretty-printed Python code that recreates the original model.
The resulting code can be used for easier (in comparison to XML
) model exploration and modification.
ov2py
can be used in two ways: as a command line utility ov2py
or as a Python module openvino_devtools.ov2py
.
When used in the command line, it accepts a path to OpenVINO IR XML
file and prints the resulting Python code to stdout:
$ ov2py your_openvino_model.xml
will print something similar to:
def build_model(model):
import openvino as ov
from openvino_devtools.builder import OpFactory, outputs_to_nodes
opset = OpFactory('opset13')
t0 = opset.Parameter({'shape': [-1, -1], 'element_type': 'f32'}, node_name="a", output_names=[{'a'}]) # -> f32[?,?]
t1 = opset.Add([t0, t0], {'auto_broadcast': 'numpy'}, node_name="aten::add/Add", output_names=[{'8'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t2 = opset.Multiply([t0, t0], {'auto_broadcast': 'numpy'}, node_name="aten::mul/Multiply", output_names=[{'3'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t3 = opset.Constant(model, 3, node_name="Constant_1730_compressed") # -> f16[1,1]([[2.0]])
t4 = opset.Convert([t3], {'destination_type': 'f32'}, node_name="Constant_1730") # f16[1,1] -> f32[1,1]
t5 = opset.Add([t2, t4], {'auto_broadcast': 'numpy'}, node_name="aten::add/Add_1", output_names=[{'6', 'b'}]) # f32[?,?], f32[1,1] -> f32[?,?]
t6 = opset.Subtract([t0, t5], {'auto_broadcast': 'numpy'}, node_name="aten::sub/Subtract", output_names=[{'10'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t7 = opset.Multiply([t1, t6], {'auto_broadcast': 'numpy'}, node_name="aten::mul/Multiply_1", output_names=[{'11'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t8 = opset.Divide([t7, t0], {'auto_broadcast': 'numpy', 'm_pythondiv': True}, node_name="aten::div/Divide", output_names=[{'12', 'input'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t9 = opset.Constant(model, 9, node_name="self.linear.weight_compressed", output_names=[{'self.linear.weight'}]) # -> f16[128,1024]
t10 = opset.Convert([t9], {'destination_type': 'f32'}, node_name="self.linear.weight") # f16[128,1024] -> f32[128,1024]
t11 = opset.MatMul([t8, t10], {'transpose_a': False, 'transpose_b': True}, node_name="__module.linear/aten::linear/MatMul") # f32[?,?], f32[128,1024] -> f32[?,128]
t12 = opset.Constant(model, 12, node_name="Constant_1731_compressed") # -> f16[1,128]
t13 = opset.Convert([t12], {'destination_type': 'f32'}, node_name="Constant_1731") # f16[1,128] -> f32[1,128]
t14 = opset.Add([t11, t13], {'auto_broadcast': 'numpy'}, node_name="__module.linear/aten::linear/Add") # f32[?,128], f32[1,128] -> f32[?,128]
t15 = opset.Result([t14], {}, node_name="Result_44") # f32[?,128] -> f32[?,128]
parameters = [t0]
results = [t15]
sinks = []
return ov.Model(outputs_to_nodes(results), outputs_to_nodes(sinks), outputs_to_nodes(parameters), name=model.get_friendly_name())
if __name__ == '__main__':
from openvino_devtools.builder import regenerate_model
regenerate_model(build_model, path_to_source_model='your_openvino_model.xml')
The resulting code can be forwarded to a file and then executed:
$ ov2py your_openvino_model.xml > generator.py
$ python generator.py name_of_destination.xml
The result is OpenVINO IR saved into name_of_destination.xml
and name_of_destination.bin
files with re-generated original model.
You can easily modify generator.py
before running the script as it is a regular Python code.
Note that the resulting Python code uses OpFactory
from openvino_devtools.builder
instead of the original OpenVINO Python API to create operations.
Using OpFactory
as a wrapper for OpenVINO Python API unlocks an easy way to override the original operation-building functionality by
replacing OpFactory
with a custom factory class.
When modifying the generated code, you can mix the original Python API with OpFactory
calls.
While the main purpose of ov2py
is to print out OpenVINO models, as a bonus functionality it accepts all supported in OpenVINO model file formats
that can be loaded with ov.Core.read_model
. For example, having ONNX model you can run:
$ ov2py your_onnx_model.onnx
and ov2py
converts the model from a source format to OpenVINO model with ov.Core.read_model
and print it out.
This functionality is convenient to explore a model compute graph in a uniform way using OpenVINO operation set without the knowledge of the original model format.
Using the module in Python is useful for debugging, especially in Jupyter Notebooks when you can generate the model as Python text, copy a full output or a part of it and insert in the next cell to generate a desired part as ov.Model.
from openvino_devtools.ov2py import ov2py
# ov_model is an instance of ov.Model, usually the result of ov.Core.read_model/ov.convert_model
print(ov2py(ov_model))
which will print the code similar to what ov2py
prints but without entry point and without names for nodes to reduce the amount of output:
def build_model(model):
import openvino as ov
from openvino_devtools.builder import OpFactory, outputs_to_nodes
opset = OpFactory('opset13')
t0 = opset.Parameter({'shape': [-1, -1], 'element_type': 'f32'}, output_names=[{'a'}]) # -> f32[?,?]
t1 = opset.Add([t0, t0], {'auto_broadcast': 'numpy'}, output_names=[{'8'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t2 = opset.Multiply([t0, t0], {'auto_broadcast': 'numpy'}, output_names=[{'3'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t3 = opset.Constant(model, 3) # -> f32[1,1]([[2.0]])
t4 = opset.Add([t2, t3], {'auto_broadcast': 'numpy'}, output_names=[{'b', '6'}]) # f32[?,?], f32[1,1] -> f32[?,?]
t5 = opset.Subtract([t0, t4], {'auto_broadcast': 'numpy'}, output_names=[{'10'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t6 = opset.Multiply([t1, t5], {'auto_broadcast': 'numpy'}, output_names=[{'11'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t7 = opset.Divide([t6, t0], {'auto_broadcast': 'numpy', 'm_pythondiv': True}, output_names=[{'12', 'input'}]) # f32[?,?], f32[?,?] -> f32[?,?]
t8 = opset.Constant(model, 8, output_names=[{'self.linear.weight'}]) # -> f32[1,10]
t9 = opset.MatMul([t7, t8], {'transpose_a': False, 'transpose_b': True}) # f32[?,?], f32[1,10] -> f32[?,1]
t10 = opset.Constant(model, 10) # -> f32[1,1]([[0.009999999776482582]])
t11 = opset.Add([t9, t10], {'auto_broadcast': 'numpy'}) # f32[?,1], f32[1,1] -> f32[?,1]
t12 = opset.Result([t11], {}) # f32[?,1] -> f32[?,1]
parameters = [t0]
results = [t12]
sinks = []
return ov.Model(outputs_to_nodes(results), outputs_to_nodes(sinks), outputs_to_nodes(parameters), name=model.get_friendly_name())
Both node names and entry point can be printed as well by providing additional arguments:
print(ov2py(ov_model, with_node_names=True, entry_point=True))
You can compare two models by running diff
on the listings generated by ov2py
.
The autogenerated output names (i.e., the output_names=...
part) can make such comparisons harder.
The with_tensor_names
option in ov2py
can be used to omit the generation of output names.
To print program listings most suitable for side-by-side comparison use the following:
print(ov2py(ov_model, with_tensor_names=False))
The following features of OpenVINO model are not supported:
- Custom operations.
- Arbitrary standard opsets (now it is fixed to
opset13
). - Run-time info of any kind: at the node level and at the model level (meta information).
- Control flow operations.
- Original model is always required to run
build_model
forConstant
ops content (when the re-generated OpenVINO model is saved to IR, the orignal model is no longer needed).
Compares XML files in two directories or two individual XML files and reports differences in tags. It scans the directories, collects operation counts from the XML files, and prints any differences in the operations count between the reference and target files. The script also includes an option to filter out files containing 'tokenizer' in their names.
Usage:
$ ovdiff [--filter-tokenizer | --no-filter-tokenizer] <reference_directory> <target_directory>
Output example:
$ ovdiff /path/to/reference/folder /path/to/target/folder
Reference: /path/to/reference/folder
Target: /path/to/target/folder
Filter tokenizer files: True
====================================================================================================
Diff: openvino_model.xml
Op difference detected
op_name ref target r-t
-------------------------------------------------
Add 228 197 31
Const 2851 2628 223
Gather 361 296 65
ShapeOf 230 166 64
Slice 162 131 31
-------------------------------------------------
Total 7040 6626 414
.bin file sizes are equal: 8035958816 bytes
====================================================================================================
Generates visual SVG representation of a given OpenVINO model. Requires graphviz
dot
command line utility to produce an SVG file.
Leverages builtin OpenVINO capabilities implemented in VisualizeTree
transformation.
Enables additional annotations like tensor shapes, types and symbols.
Usage:
$ ov2svg <model.xml> [ <output_file.svg> ]
If <output_file.svg>
is not provided then model.svg
will be used as output name, where model
is a part of input file name.
If <output_file.svg>
has no .svg
extension, it will be added.
The tool overrides existing output file without a warning.
Gives the aggregated statistics on operations used in the model alongside with input and output tensor types and attribute values.
The aggregation group together all static dimensions and denote it as S
.
Similarly, it aggregates all dynamic dimensions and denote them as ?
.
Shape-like operation attributes are aggregated in the same way.
Attribute variable_id
values in operations ReadValue
and Assign
are aggregated as well and denoted as S
.
Number of operations in each group is printed at the end of the line, after the tabulation symbol.
Usage:
$ ovstat <model.xml>
Sample output:
Add { auto_broadcast = numpy } : i64[S], i64[S] -> i64[S] 33
Add { auto_broadcast = numpy } : f32[?,?,S], f32[?,?,S] -> f32[?,?,S] 64
Add { auto_broadcast = numpy } : i32[], i32[S] -> i32[S] 32
Assign { variable_id = S } : f32[?,S,?,S] -> f32[?,S,?,S] 64
Broadcast { mode = numpy } : f32[], i64[S] -> f32[?,S,S,S] 64
Broadcast { mode = bidirectional } : f32[S,S,S], i64[S] -> f32[?,S,S] 1
Concat { axis = 0 } : i64[S], i64[S], i64[S], i64[S] -> i64[S] 66
Concat { axis = 0 } : i64[S], i64[S] -> i64[S] 2
Constant { element_type = f32, shape = [] } : -> f32[] 70
Constant { element_type = i64, shape = [S] } : -> i64[S] 1358
Constant { element_type = i64, shape = [] } : -> i64[] 116
Parameter { shape = [?], element_type = i32 } : -> i32[?] 1
Parameter { shape = [?,?], element_type = i64 } : -> i64[?,?] 3
ReadValue { variable_id = S, variable_type = f32, variable_shape = [?,S,?,S] } : f32[?,S,S,S] -> f32[?,S,?,S] 64
Result { } : f32[?,?,S] -> f32[?,?,S] 1