Skip to content

remove deprecated and update to python3 and tensorflow 1.3.0 #11

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions key_value_memory/memn2n_kv.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def add_gradient_noise(t, stddev=1e-3, name=None):

0.001 was said to be a good fixed value for memory networks [2].
"""
with tf.op_scope([t, stddev], name, "add_gradient_noise") as name:
with tf.name_scope(name, "add_gradient_noise", [t, stddev]) as name:
t = tf.convert_to_tensor(t, name="t")
gn = tf.random_normal(tf.shape(t), stddev=stddev)
return tf.add(t, gn, name=name)
Expand All @@ -44,11 +44,11 @@ def zero_nil_slot(t, name=None):
The nil_slot is a dummy slot and should not be trained and influence
the training algorithm.
"""
with tf.op_scope([t], name, "zero_nil_slot") as name:
with tf.name_scope(name, "zero_nil_slot", [t]) as name:
t = tf.convert_to_tensor(t, name="t")
s = tf.shape(t)[1]
z = tf.zeros(tf.pack([1, s]))
return tf.concat(0, [z, tf.slice(t, [1, 0], [-1, -1])], name=name)
return tf.concat([z, tf.slice(t, [1, 0], [-1, -1])], 0, name=name)

class MemN2N_KV(object):
"""Key Value Memory Network."""
Expand Down Expand Up @@ -120,10 +120,10 @@ def __init__(self, batch_size, vocab_size,
# Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
nil_word_slot = tf.zeros([1, embedding_size])
self.W = tf.concat(0, [nil_word_slot, tf.get_variable('W', shape=[vocab_size-1, embedding_size],
initializer=tf.contrib.layers.xavier_initializer())])
self.W_memory = tf.concat(0, [nil_word_slot, tf.get_variable('W_memory', shape=[vocab_size-1, embedding_size],
initializer=tf.contrib.layers.xavier_initializer())])
self.W = tf.concat([nil_word_slot, tf.get_variable('W', shape=[vocab_size-1, embedding_size],
initializer=tf.contrib.layers.xavier_initializer())], 0)
self.W_memory = tf.concat([nil_word_slot, tf.get_variable('W_memory', shape=[vocab_size-1, embedding_size],
initializer=tf.contrib.layers.xavier_initializer())], 0)
# self.W_memory = self.W
self._nil_vars = set([self.W.name, self.W_memory.name])
# shape: [batch_size, query_size, embedding_size]
Expand Down Expand Up @@ -186,7 +186,7 @@ def __init__(self, batch_size, vocab_size,
#logits = tf.nn.dropout(tf.matmul(o, self.B) + logits_bias, self.keep_prob)
probs = tf.nn.softmax(tf.cast(logits, tf.float32))

cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, tf.cast(self._labels, tf.float32), name='cross_entropy')
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.cast(self._labels, tf.float32), name='cross_entropy')
cross_entropy_sum = tf.reduce_sum(cross_entropy, name="cross_entropy_sum")

# loss op
Expand Down
11 changes: 6 additions & 5 deletions key_value_memory/single.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,11 @@
from __future__ import print_function

from data_utils import load_task, vectorize_data
from sklearn import cross_validation, metrics
from sklearn import model_selection, metrics
from memn2n_kv import MemN2N_KV
from itertools import chain
from six.moves import range
from functools import reduce

import tensorflow as tf
import numpy as np
Expand Down Expand Up @@ -44,7 +45,7 @@
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))

max_story_size = max(map(len, (s for s, _, _ in data)))
mean_story_size = int(np.mean(map(len, (s for s, _, _ in data))))
mean_story_size = int(np.mean(list(map(len, (s for s, _, _ in data)))))
sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data)))
query_size = max(map(len, (q for _, q, _ in data)))
memory_size = min(FLAGS.memory_size, max_story_size)
Expand All @@ -57,7 +58,7 @@

# train/validation/test sets
S, Q, A = vectorize_data(train, word_idx, sentence_size, memory_size)
trainS, valS, trainQ, valQ, trainA, valA = cross_validation.train_test_split(S, Q, A, test_size=.1)
trainS, valS, trainQ, valQ, trainA, valA = model_selection.train_test_split(S, Q, A, test_size=.1)
testS, testQ, testA = vectorize_data(test, word_idx, sentence_size, memory_size)

print("Training set shape", trainS.shape)
Expand All @@ -76,7 +77,7 @@
val_labels = np.argmax(valA, axis=1)

batch_size = FLAGS.batch_size
batches = zip(range(0, n_train-batch_size, batch_size), range(batch_size, n_train, batch_size))
batches = list(zip(range(0, n_train-batch_size, batch_size), range(batch_size, n_train, batch_size)))

with tf.Graph().as_default():
session_conf = tf.ConfigProto(
Expand Down Expand Up @@ -110,7 +111,7 @@
nil_grads_and_vars.append((g, v))

train_op = optimizer.apply_gradients(nil_grads_and_vars, name="train_op", global_step=global_step)
sess.run(tf.initialize_all_variables())
sess.run(tf.global_variables_initializer())

def train_step(s, q, a):
feed_dict = {
Expand Down