Skip to content

sherwinbahmani/threed_front_rendering

Repository files navigation

This repository is based on BlenderProc and ATISS.

Run: bash create_dataset.sh

ATISS: Autoregressive Transformers for Indoor Scene Synthesis

Example 1 Example 2 Example 3

This repository contains the code that accompanies our paper ATISS: Autoregressive Transformers for Indoor Scene Synthesis.

You can find detailed usage instructions for training your own models, using our pretrained models as well as performing the interactive tasks described in the paper below.

If you found this work influential or helpful for your research, please consider citing

@Inproceedings{Paschalidou2021NEURIPS,
  author = {Despoina Paschalidou and Amlan Kar and Maria Shugrina and Karsten Kreis and Andreas Geiger and Sanja Fidler},
  title = {ATISS: Autoregressive Transformers for Indoor Scene Synthesis},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

Installation & Dependencies

Our codebase has the following dependencies:

For the visualizations, we use simple-3dviz, which is our easy-to-use library for visualizing 3D data using Python and ModernGL and matplotlib for the colormaps. Note that simple-3dviz provides a lightweight and easy-to-use scene viewer using wxpython. If you wish you use our scripts for visualizing the generated scenes, you will need to also install wxpython. Note that for all the renderings in the paper we used NVIDIA's OMNIVERSE.

The simplest way to make sure that you have all dependencies in place is to use conda. You can create a conda environment called atiss using

conda env create -f environment.yaml
conda activate atiss

Next compile the extension modules. You can do this via

python setup.py build_ext --inplace
pip install -e .

Dataset

To evaluate a pretrained model or train a new model from scratch, you need to obtain the 3D-FRONT and the 3D-FUTURE dataset. To download both datasets, please refer to the instructions provided in the dataset's webpage. As soon as you have downloaded the 3D-FRONT and the 3D-FUTURE dataset, you are ready to start the preprocessing. In addition to a preprocessing script (preprocess_data.py), we also provide a very useful script for visualising 3D-FRONT scenes (render_threedfront_scene.py), which you can easily execute by running

python render_threedfront_scene.py SCENE_ID path_to_output_dir path_to_3d_front_dataset_dir path_to_3d_future_dataset_dir path_to_3d_future_model_info path_to_floor_plan_texture_images

You can also visualize the walls, the windows as well as objects with textures by setting the corresponding arguments. Apart from only visualizing the scene with scene id SCENE_ID, the render_threedfront_scene.py script also generates a subfolder in the output folder, specified via the path_to_output_dir argument that contains the .obj files as well as the textures of all objects in this scene. Note that examples of the expected scene ids SCENE_ID can be found in the train/test/val split files for the various rooms in the config folder, e.g. MasterBedroom-28057, LivingDiningRoom-4125 etc.

Data Preprocessing

Once you have downloaded the 3D-FRONT and 3D-FUTURE datasets you need to run the preprocess_data.py script in order to prepare the data to be able to train your own models or generate new scenes using previously trained models. To run the preprocessing script simply run

python preprocess_data.py path_to_output_dir path_to_3d_front_dataset_dir path_to_3d_future_dataset_dir path_to_3d_future_model_info path_to_floor_plan_texture_images --dataset_filtering threed_front_bedroom

Note that you can choose the filtering for the different room types (e.g. bedrooms, living rooms, dining rooms, libraries) via the dataset_filtering argument. The path_to_floor_plan_texture_images is the path to a folder containing different floor plan textures that are necessary to render the rooms using a top-down orthographic projection. An example of such a folder can be found in the demo\floor_plan_texture_images folder.

This script starts by parsing all scenes from the 3D-FRONT dataset and then for each scene it generates a subfolder inside the path_to_output_dir that contains the information for all objects in the scene (boxes.npz), the room mask (room_mask.png) and the scene rendered using a top-down orthographic_projection (rendered_scene_256.png). Note that for the case of the living rooms and dining rooms you also need to change the size of the room during rendering to 6.2m from 3.1m, which is the default value, via the --room_side argument.

Morover, you will notice that the preprocess_data.py script takes a significant amount of time to parse all 3D-FRONT scenes. To reduce the waiting time, we cache the parsed scenes and save them to the /tmp/threed_front.pkl file. Therefore, once you parse the 3D-FRONT scenes once you can provide this path in the environment variable PATH_TO_SCENES for the next time you run this script as follows:

PATH_TO_SCENES="/tmp/threed_front.pkl" python preprocess_data.py path_to_output_dir path_to_3d_front_dataset_dir path_to_3d_future_dataset_dir path_to_3d_future_model_info path_to_floor_plan_texture_images --dataset_filtering room_type

Finally, to further reduce the pre-processing time, note that it is possible to run this script in multiple threads, as it automatically checks whether a scene has been preprocessed and if it is it moves forward to the next scene.

How to pickle the 3D-FUTURE dataset

Most of our scripts require to provide a path to a file that contains the parsed ThreedFutureDataset after being pickled. To do this, we provide the pickle_threed_future_dataset.py that does this automatically for you. You can simply run this script as follows:

python pickle_threed_future_dataset.py path_to_output_dir path_to_3d_front_dataset_dir path_to_3d_future_dataset_dir path_to_3d_future_model_info --dataset_filtering room_type

Note that by specifying the PATH_TO_SCENES environment variable this script will run significantly faster. Moreover, this step is necessary for all room types containing different objects. For the case of 3D-FRONT this is for the bedrooms and the living/dining rooms, thus you have to run this script twice with different --dataset_filtering options. Please check the help menu for additional details.

Usage

As soon as you have installed all dependencies and have generated the preprocessed data, you can now start training new models from scratch, evaluate our pre-trained models and visualize the generated scenes using one of our pre-trained models. All scripts expect a path to a config file. In the config folder you can find the configuration files for the different room types. Make sure to change the dataset_directory argument to the path where you saved the preprocessed data from before.

Scene Generation

To generate rooms using a previously trained model, we provide the generate_scenes.py script and you can execute it by running

python generate_scenes.py path_to_config_yaml path_to_output_dir path_to_3d_future_pickled_data path_to_floor_plan_texture_images --weight_file path_to_weight_file

where the argument --weight_file specifies the path to a trained model and the argument path_to_config_yaml defines the path to the config file used to train that particular model. By default this script randomly selects floor plans from the test set and conditioned on this floor plan it generate different arrangements of objects. Note that if you want to generate a scene conditioned on a specific floor plan, you can select it by providing its scene id via the --scene_id argument. In case you want to run this script headlessly you should set the --without_screen argument. Finally, the path_to_3d_future_pickled_data specifies the path that contains the parsed ThreedFutureDataset after being pickled.

Scene Completion && Object Placement

To perform scene completion, we provide the scene_completion.py script that can be executed by running

python scene_completion.py path_to_config_yaml path_to_output_dir path_to_3d_future_pickled_data path_to_floor_plan_texture_images --weight_file path_to_weight_file

where the argument --weight_file specifies the path to a trained model and the argument path_to_config_yaml defines the path to the config file used to train that particular model. For this script make sure that the encoding type in the config file has also the word eval in it. By default this script randomly selects a room from the test set and conditioned on this partial scene it populates the empty space with objects. However, you can choose a specific room via the --scene_id argument. This script can be also used to perform object placement. Namely starting from a partial scene add an object of a specific object category.

In the output directory, the scene_completion.py script generates two folders for each completion, one that contains the mesh files of the initial partial scene and another one that contains the mesh files of the completed scene.

Object Suggestions

We also provide a script that performs object suggestions based on a user-specified region of acceptable positions. Similar to the previous scripts you can execute by running

python object_suggestion.py path_to_config_yaml path_to_output_dir path_to_3d_future_pickled_data path_to_floor_plan_texture_images --weight_file path_to_weight_file

where the argument --weight_file specifies the path to a trained model and the argument path_to_config_yaml defines the path to the config file used to train that particular model. Also for this script, please make sure that the encoding type in the config file has also the word eval in it. By default this script randomly selects a room from the test set and the user can either choose to remove some objects or keep it unchanged. Subsequently, the user needs to specify the acceptable positions to place an object using 6 comma seperated numbers that define the bounding box of the valid positions. Similar to the previous scripts, it is possible to select a particular scene by choosing specific room via the --scene_id argument.

In the output directory, the object_suggestion.py script generates two folders in each run, one that contains the mesh files of the initial scene and another one that contains the mesh files of the completed scene with the suggested object.

Failure Cases Detection and Correction

We also provide a script that performs failure cases correction on a scene that contains a problematic object. You can simply execute it by running

python failure_correction.py path_to_config_yaml path_to_output_dir path_to_3d_future_pickled_data path_to_floor_plan_texture_images --weight_file path_to_weight_file

where the argument --weight_file specifies the path to a trained model and the argument path_to_config_yaml defines the path to the config file used to train that particular model. Also for this script, please make sure that the encoding type in the config file has also the word eval in it. By default this script randomly selects a room from the test set and the user needs to select an object inside the room that will be located in an unnatural position. Given the scene with the unnatural position, our model identifies the problematic object and repositions it in a more plausible position.

In the output directory, the falure_correction.py script generates two folders in each run, one that contains the mesh files of the initial scene with the problematic object and another one that contains the mesh files of the new scene.

Training

Finally, to train a new network from scratch, we provide the train_network.py script. To execute this script, you need to specify the path to the configuration file you wish to use and the path to the output directory, where the trained models and the training statistics will be saved. Namely, to train a new model from scratch, you simply need to run

python train_network.py path_to_config_yaml path_to_output_dir

Note that it is also possible to start from a previously trained model by specifying the --weight_file argument, which should contain the path to a previously trained model.

Note that, if you want to use the RAdam optimizer during training, you will have to also install to download and install the corresponding code from this repository.

We also provide the option to log the experiment's evolution using Weights & Biases. To do that, you simply need to set the --with_wandb_logger argument and of course to have installed wandb in your conda environment.

Relevant Research

Please also check out the following papers that explore similar ideas:

  • Fast and Flexible Indoor Scene Synthesis via Deep Convolutional Generative Models pdf
  • Sceneformer: Indoor Scene Generation with Transformers pdf

BlenderProc2

Documentation Open In Collab License: GPL v3

Front readme image

A procedural Blender pipeline for photorealistic rendering.

Documentation | Tutorials | Examples | ArXiv paper | Workshop paper

Features

  • Loading: *.obj, *.ply, *.blend, BOP, ShapeNet, Haven, 3D-FRONT, etc.
  • Objects: Set or sample object poses, apply physics and collision checking.
  • Materials: Set or sample physically-based materials and textures
  • Lighting: Set or sample lights, automatic lighting of 3D-FRONT scenes.
  • Cameras: Set, sample or load camera poses from file.
  • Rendering: RGB, stereo, depth, normal and segmentation images/sequences.
  • Writing: .hdf5 containers, COCO & BOP annotations.

Installation

Via pip

The simplest way to install blenderproc is via pip:

pip install blenderproc

Git clone

If you need to make changes to blenderproc or you want to make use of the most recent version on the main-branch, clone the repository:

git clone https://github.com/DLR-RM/BlenderProc

To still make use of the blenderproc command and therefore use blenderproc anywhere on your system, make a local pip installation:

cd BlenderProc
pip install -e .

Usage

BlenderProc has to be run inside the blender python environment, as only there we can access the blender API. Therefore, instead of running your script with the usual python interpreter, the command line interface of BlenderProc has to be used.

blenderproc run <your_python_script>

In general, one run of your script first loads or constructs a 3D scene, then sets some camera poses inside this scene and renders different types of images (RGB, distance, semantic segmentation, etc.) for each of those camera poses. Usually, you will run your script multiple times, each time producing a new scene and rendering e.g. 5-20 images from it. With a little more experience, it is also possible to change scenes during a single script call, read here how this is done.

Quickstart

You can test your BlenderProc pip installation by running

blenderproc quickstart

This is an alias to blenderproc run quickstart.py where quickstart.py is:

import blenderproc as bproc
import numpy as np

bproc.init()

# Create a simple object:
obj = bproc.object.create_primitive("MONKEY")

# Create a point light next to it
light = bproc.types.Light()
light.set_location([2, -2, 0])
light.set_energy(300)

# Set the camera to be in front of the object
cam_pose = bproc.math.build_transformation_mat([0, -5, 0], [np.pi / 2, 0, 0])
bproc.camera.add_camera_pose(cam_pose)

# Render the scene
data = bproc.renderer.render()

# Write the rendering into an hdf5 file
bproc.writer.write_hdf5("output/", data)

BlenderProc creates the specified scene and renders the image into output/0.hdf5. To visualize that image, simply call:

blenderproc vis hdf5 output/0.hdf5

Thats it! You rendered your first image with BlenderProc!

Debugging in the Blender GUI

To understand what is actually going on, BlenderProc has the great feature of visualizing everything inside the blender UI. To do so, simply call your script with the debug instead of run subcommand:

blenderproc debug quickstart.py

Now the Blender UI opens up, the scripting tab is selected and the correct script is loaded. To start the BlenderProc pipeline, one now just has to press Run BlenderProc (see red circle in image). As in the normal mode, print statements are still printed to the terminal.

Front readme image

The pipeline can be run multiple times, as in the beginning of each run the scene is cleared.

Breakpoint-Debugging in IDEs

As blenderproc runs in blenders separate python environment, debugging your blenderproc script cannot be done in the same way as with any other python script. Therefore, remote debugging is necessary, which is explained for vscode and PyCharm in the following:

Debugging with vscode

First, install the debugpy package in blenders python environment.

blenderproc pip install debugpy

Now add the following configuration to your vscode launch.json.

{                        
    "name": "Attach",
    "type": "python",
    "request": "attach",
    "connect": {
        "host": "localhost",
        "port": 5678
    }
}

Finally, add the following lines to the top (after the imports) of your blenderproc script which you want to debug.

import debugpy
debugpy.listen(5678)
debugpy.wait_for_client()

Now run your blenderproc script as usual via the CLI and then start the added "Attach" configuration in vscode. You are now able to add breakpoints and go through the execution step by step.

Debugging with PyCharm Professional

In Pycharm, go to Edit configurations... and create a new configuration based on Python Debug Server. The configuration will show you, specifically for your version, which pip package to install and which code to add into the script. The following assumes Pycharm 2021.3:

First, install the pydevd-pycharm package in blenders python environment.

blenderproc pip install pydevd-pycharm~=212.5457.59

Now, add the following code to the top (after the imports) of your blenderproc script which you want to debug.

import pydevd_pycharm
pydevd_pycharm.settrace('localhost', port=12345, stdoutToServer=True, stderrToServer=True)

Then, first run your Python Debug Server configuration in PyCharm and then run your blenderproc script as usual via the CLI. PyCharm should then go in debug mode, blocking the next code line. You are now able to add breakpoints and go through the execution step by step.

What to do next?

As you now ran your first BlenderProc script, your ready to learn the basics:

Tutorials

Read through the tutorials, to get to know with the basic principles of how BlenderProc is used:

  1. Loading and manipulating objects
  2. Configuring the camera
  3. Rendering the scene
  4. Writing the results to file
  5. How key frames work
  6. Positioning objects via the physics simulator

Examples

We provide a lot of examples which explain all features in detail and should help you understand how BlenderProc works. Exploring our examples is the best way to learn about what you can do with BlenderProc. We also provide support for some datasets.

and much more, see our examples for more details.

Contributions

Found a bug? help us by reporting it. Want a new feature in the next BlenderProc release? Create an issue. Made something useful or fixed a bug? Start a PR. Check the contributions guidelines.

Change log

See our change log.

Citation

If you use BlenderProc in a research project, please cite as follows:

@article{denninger2019blenderproc,
  title={BlenderProc},
  author={Denninger, Maximilian and Sundermeyer, Martin and Winkelbauer, Dominik and Zidan, Youssef and Olefir, Dmitry and Elbadrawy, Mohamad and Lodhi, Ahsan and Katam, Harinandan},
  journal={arXiv preprint arXiv:1911.01911},
  year={2019}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published