Skip to content

Plot one-dimensional data using quasirandom noise and density estimates

Notifications You must be signed in to change notification settings

sherrillmix/vipor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Plot one-dimensional data using quasirandom noise and kernel density

CRAN_Status_Badge

Introduction

vipor (VIolin POints in R) provides a way to plot one-dimensional data (perhaps divided into several categories) by spreading the data points to fill the kernel density. It uses a van der Corput sequence to space the dots and avoid generating distracting patterns in the data. See the examples below.

Violin scatter plots (aka column scatter plots or beeswarm plots or one dimensional scatter plots) are a way of plotting points that would ordinarily overlap so that they fall next to each other instead. In addition to reducing overplotting, it helps visualize the density of the data at each point (similar to a violin plot), while still showing each data point individually.

Installation

This package is on CRAN so install should be a simple:

install.packages('vipor')

If you want the development version from GitHub, you can do:

devtools::install_github("sherrillmix/vipor")

Examples

Violin point examples

We use the provided function offsetX to generate the x-offsets for plotting.

library(vipor)
# Generate data
set.seed(12345)
dat <- list(rnorm(50), rnorm(500), c(rnorm(100), rnorm(100,5)), rcauchy(100))
names(dat) <- c("Normal", "Dense Normal", "Bimodal", "Extremes")

# Violin points of several distributions
par(mfrow=c(4,1), mar=c(2.5,3.1, 1.2, 0.5),mgp=c(2.1,.75,0),
	cex.axis=1.2,cex.lab=1.2,cex.main=1.2)
sapply(names(dat),function(label) {
	y<-dat[[label]]
	offsets <- list(
		'Default'=offsetX(y),  # Default
		'Adjust=2'=offsetX(y, adjust=2),    # More smoothing
		'Adjust=.1'=offsetX(y, adjust=0.1),  # Tighter fit
		'Width=10%'=offsetX(y, width=0.1)    # Less wide
	)  
	ids <- rep(1:length(offsets), each=length(y))
	plot(unlist(offsets) + ids, rep(y, length(offsets)), ylab='y value',
		xlab='', xaxt='n', pch=21,col='#00000099',bg='#00000033',las=1,main=label)
	axis(1, 1:length(offsets), names(offsets))
})

plot of chunk adjust-examples

Comparison with other methods

library(beeswarm)
par(mfrow=c(4,1), mar=c(2.5,3.1, 1.2, 0.5),mgp=c(2.1,.75,0),
	cex.axis=1.2,cex.lab=1.2,cex.main=1.2)
sapply(names(dat),function(label) {
	y<-dat[[label]]
	#need to start plot first for beeswarm so xlim is magic number here
	plot(1,1,type='n',ylab='y value',xlim=c(.5,8+.5),
		ylim=range(y),xlab='', xaxt='n', ,las=1,main=label)
	offsets <- list(
		'Quasi'=offsetX(y),  # Default
		'Pseudo'=offsetX(y, method='pseudorandom',nbins=100),
		'Frown'=offsetX(y, method='frowney',nbins=20),
		'Smile\n20 bin'=offsetX(y, method='smiley',nbins=20),
		'Smile\n100 bin'=offsetX(y, method='smiley',nbins=100),
		'Smile\nn/5 bin'=offsetX(y, method='smiley',nbins=round(length(y)/5)),
		'Tukey'=offsetX(y, method='tukey'),
		'Beeswarm'=swarmx(rep(0,length(y)),y)$x
	)
	ids <- rep(1:length(offsets), each=length(y))

	points(unlist(offsets) + ids, rep(y, length(offsets)),pch=21,col='#00000099',bg='#00000033')
	par(lheight=.8)
	axis(1, 1:length(offsets), names(offsets),padj=1,mgp=c(0,-.3,0),tcl=-.5)
})

plot of chunk other-methods

And using the county data from Tukey and Tukey:

par(mar=c(2.5,3.1, 1.2, 0.5),mgp=c(2.1,.75,0))
y<-log10(counties$landArea)
offsets <- list(
  'Quasi'=offsetX(y),  # Default
  'Quasi\nadjust=.25'=offsetX(y,adjust=.25),
  'Pseudo'=offsetX(y, method='pseudorandom',nbins=100),
  'Smile'=offsetX(y, method='smiley'),
  'Smile\nadjust=.25'=offsetX(y, method='smiley',adjust=.25),
  'Tukey'=offsetX(y, method='tukey')
)
ids <- rep(1:length(offsets), each=length(y))
plot(
  unlist(offsets) + ids,
  rep(y, length(offsets)),
  xlab='', ylab='Land area (log10)',
  main='Counties', xaxt='n', las=1,
  pch='.'
)
par(lheight=.8)
axis(1, 1:length(offsets), names(offsets),padj=1,mgp=c(0,-.3,0),tcl=-.5)

plot of chunk methods-county


Authors: Scott Sherrill-Mix and Erik Clarke

About

Plot one-dimensional data using quasirandom noise and density estimates

Resources

Stars

Watchers

Forks

Packages

No packages published