Skip to content

shaguopohuaizhe/TSAA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Transferable Sparse Adversarial Attack

Pytorch Implementation of our paper "Transferable Sparse Adversarial Attack".

Table of Contents

  1. Dependencies
  2. Pretrained-Generators
  3. Datasets
  4. Training/Eval

Dependencies

  1. Install pytorch. This repo is tested with pytorch==1.6.0.
  2. Install python packages using following command:
pip install -r requirements.txt

This repo is tested with python==3.8.5.

Pretrained-Generators

Download pretrained adversarial generators from here.

Adversarial generators are trained against following two models.

  • Inceptionv3
  • ResNet50

These models are trained on ImageNet and available in Pytorch.

Datasets

  • Training data:

  • Evaluations data:

    • randomly selected 5k images from ImageNet Validation Set. You can download evaluations data from here.

Training

Run the following command

  python train.py --train_dir [path_to_train] --model_type incv3 --eps 255 --target -1

This will start trainig a generator trained on one dataset (--train_dir) against Inceptionv3 (--model_type) under perturbation budget $\ell_\infty$=255 (--eps) in a non-targeted setting (--target).

Evaluations

Run the following command

  python eval.py --test_dir [path_to_val] --model_type incv3 --model_t res50 --eps 255 --target 971 --checkpoint [path_to_checkpoint]

This will load a generator trained against Inceptionv3 (--model_type) and evaluate clean and adversarial accuracy of ResNet50 (--model_t) under perturbation budget 255 (--eps) in a targeted setting (--target).

Citation

If you find this repo useful, please cite our paper.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages