Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions python/sglang/srt/custom_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@ def dispatch_forward(self):
def scaled_fp8_quant(
input: torch.Tensor,
scale: Optional[torch.Tensor] = None,
num_token_padding: Optional[int] = None,
use_per_token_if_dynamic: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Expand All @@ -59,6 +60,8 @@ def scaled_fp8_quant(
input (torch.Tensor): Input tensor to be quantized
scale (Optional[torch.Tensor]): Pre-computed scaling factor for static quantization.
If None, scales will be computed dynamically.
num_token_padding (Optional[int]): If specified, pad the first dimension
of the output to at least this value.
use_per_token_if_dynamic (bool): When using dynamic scaling (scale=None),
determines the quantization granularity:
- True: compute scale per token
Expand All @@ -75,6 +78,8 @@ def scaled_fp8_quant(
assert input.ndim == 2, f"Expected 2D input tensor, got {input.ndim}D"
shape = input.shape
out_dtype = torch.float8_e4m3fnuz if _is_hip else torch.float8_e4m3fn
if num_token_padding:
shape = (max(num_token_padding, input.shape[0]), shape[1])
output = torch.empty(shape, device=input.device, dtype=out_dtype)

if scale is None:
Expand Down
5 changes: 1 addition & 4 deletions python/sglang/srt/layers/quantization/fp8_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -457,12 +457,9 @@ def apply(
qinput, x_scale = sgl_scaled_fp8_quant(
input_2d,
input_scale,
num_token_padding=self.output_padding,
use_per_token_if_dynamic=use_per_token_if_dynamic,
)
if self.output_padding:
pad_size = max(self.output_padding - qinput.shape[0], 0)
if pad_size > 0:
qinput = torch.nn.functional.pad(qinput, (0, 0, 0, pad_size))
else:
qinput, x_scale = ops.scaled_fp8_quant(
input_2d,
Expand Down
55 changes: 55 additions & 0 deletions python/sglang/test/test_custom_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,61 @@ def dequantize_per_token(tensor, inv_scale, dtype):
dequantize_per_token(ref_y, scale, dtype),
)

@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
def test_scaled_fp8_quant_with_padding(dtype) -> None:
original_rows = 5
x = (torch.randn(size=(original_rows, 16), device="cuda") * 13).to(dtype)

padding_size = 10

# Test with dynamic quantization
y_dynamic, scale_dynamic = scaled_fp8_quant(
x, None, num_token_padding=padding_size
)

# Verify output shape has the padded size
assert y_dynamic.shape[0] == padding_size
assert y_dynamic.shape[1] == x.shape[1]

# Verify that the actual data in the non-padded region is correctly quantized
y_without_padding, scale_without_padding = scaled_fp8_quant(x, None)
torch.testing.assert_close(y_dynamic[:original_rows], y_without_padding)

# Test with static quantization
# First get a scale
_, scale = scaled_fp8_quant(x, None)

# Then use it for static quantization with padding
y_static, _ = scaled_fp8_quant(x, scale, num_token_padding=padding_size)

# Verify output shape has the padded size
assert y_static.shape[0] == padding_size
assert y_static.shape[1] == x.shape[1]

# Verify that the actual data in the non-padded region is correctly quantized
y_static_without_padding, _ = scaled_fp8_quant(x, scale)
torch.testing.assert_close(y_static[:original_rows], y_static_without_padding)

# Test with per-token dynamic quantization
y_per_token, scale_per_token = scaled_fp8_quant(
x, None, num_token_padding=padding_size, use_per_token_if_dynamic=True
)

# Verify output shape has the padded size
assert y_per_token.shape[0] == padding_size
assert y_per_token.shape[1] == x.shape[1]

# Verify that the actual data in the non-padded region is correctly quantized
y_per_token_without_padding, scale_per_token_without_padding = scaled_fp8_quant(
x, None, use_per_token_if_dynamic=True
)
torch.testing.assert_close(
y_per_token[:original_rows], y_per_token_without_padding
)
torch.testing.assert_close(
scale_per_token[:original_rows], scale_per_token_without_padding
)


if __name__ == "__main__":
# Run the specific test function directly
Expand Down
Loading