Skip to content

seitalab/SynECG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Experiment code for Efficient Self-supervised Pretraining with Simple Synthesized ECG

Prepare directories

  • PATH_TO_ORIGINAL_DATA: Edit line7 of invoke_container.sh
  • PATH_TO_PROCESSED_DATA_SAVE_DIR: Edit line8 of invoke_container.sh

Data preparation

  1. Real-world data.
  • Download CPSC, G12EC, and PTBXL dataset and place at PATH_TO_ORIGINAL_DATA
  • Move to src/prep/dataset and run bash prep_data.sh.
  1. Synthesized data.
  • Move to src/prep/syn and run bash syn_data.sh

Baseline selection

  • Move to src/baselines
  • cd resources and run python generate_yaml.py 1-19
  • cd .. and run python experiment.py --exp 1-19

MAE pretraining

  • Move to src/mae_pt
  • cd resources and run python prepare_pt_yamls.py 1p
  • cd .. and run python pretrain.py --pt <pretrain_id>

Abnormal ECG classification

  • Move to src/mae_exp
  • cd resources and run python generate_yaml.py
  • cd .. and run python experiment.py --exp <exp_id>

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages