Skip to content
forked from ssydasheng/FBNN

Code for "Functional variational Bayesian neural networks" (https://arxiv.org/abs/1903.05779)

Notifications You must be signed in to change notification settings

sebastianober/FBNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Functional Variational Bayesian Neural Networks

This code is jointly contributed by Shengyang Sun, Guodong Zhang and Jiaxin Shi.

Introduction

Code for "Functional variational Bayesian neural networks" (https://arxiv.org/abs/1903.05779)

Dependencies

This project runs with Python 3.6. Before running the code, you have to install

Experiments

Periodic Prior RBF Prior

Below we shows some examples to run the experiments.

x3 regression

python exp/toy.py -d x3 -in 0.01

sinusoidal extrapolation

python exp/toy.py -d sin -na 40 -nh 5 -nu 500 -e 50000 -il -2

Inference on Implicit Piecewise Priors

python exp/piecewise.py -d p_const

Regression

python exp/regression.py -d yacht

Contextual Bandits

python exp/bandits.py --data_type statlog

Citation

To cite this work, please use

@article{sun2019functional,
  title={Functional Variational Bayesian Neural Networks},
  author={Sun, Shengyang and Zhang, Guodong and Shi, Jiaxin and Grosse, Roger},
  journal={arXiv preprint arXiv:1903.05779},
  year={2019}
}

About

Code for "Functional variational Bayesian neural networks" (https://arxiv.org/abs/1903.05779)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%