Build the dynamic library and install it in /usr/local/bin
, copy headers in /usr/local/include/neat_gru_lib
.
This command will ask for your root password as it is needed to do the installation.
./bootstrap.sh
Link neat_gru
dynamic library.
#include "neat_gru_lib/neat_gru.h"
C
const char path[] = "path.json";
const NeatGruResult result = load_network_from_file_f64(path);
assert(result.status == NeatGruStatus::Sucess);
const long INPUT_SIZE = 4;
const double input[INPUT_SIZE] = {0.5, 0.5, 0.1, -0.2};
double output[2];
compute_network_f64(result.network, INPUT_SIZE, input, output);
// Do something with output buffer.
// ...
// Free memory.
free_network_f64(result.network);
C++
using namespace NeatGru;
const std::string path = "path.json";
NeuralNetwork<double> network = NeuralNetwork<double>::FromFile(path);
const long INPUT_SIZE = 4;
const double input[INPUT_SIZE] = {0.5, 0.5, 0.1, -0.2};
double output[2];
// We use raw C pointers for performance.
network.Compute(INPUT_SIZE, input, output);
// Do something with output buffer.
// ...
network.Reset();
Right now this is the only working example. You can run it via:
cargo run --example example
In Cargo.toml
:
[dependencies]
neat-gru = "1.4.0"
Create a struct that implements the Game
trait
use neat_gru::game::Game;
use neat_gru::neural_network::NeuralNetwork;
use neat_gru::train::{Train, HistoricTopology};
struct Player {
pub net: NeuralNetwork<f64>,
}
impl Player {
pub fn new(net: NeuralNetwork<f64>) -> Player {
Player {
net,
}
}
}
struct Simulation {
players: Vec<Player>,
}
impl Simulation {
pub fn new() -> Simulation {
Simulation {
players: Vec::new(),
}
}
}
impl Game<f64> for Simulation {
// Loss function
fn run_generation(&mut self) -> Vec<f64> {
let inputs = get_inputs();
self.players.iter().map(|p| {
let output = p.net.compute(inputs);
let scores = compute_score(output, target);
scores
}).collect()
}
// Reset networks
fn reset_players(&mut self, nets: Vec<NeuralNetwork<f64>>) {
self.players.clear();
self.players = nets
.into_iter()
.map(Player::new)
.collect();
}
// Called at the end of training
fn post_training(&mut self, history: &[HistoricTopology<f64>]) {
// Iter on best topologies and upload the best one
}
}
Async run_generation (has to be run inside an async runtime like Tokio)
#[async_trait]
impl GameAsync<f64> for Simulation {
// Loss function
async fn run_generation(&mut self) -> Vec<f64> {
let inputs = get_inputs().await;
self.players.iter().map(|p| {
let output = p.net.compute(inputs);
let scores = compute_score(output, target);
scores
}).collect()
}
}
Launch a training
fn run_sim() {
let mut sim = Simulation::new();
let mut runner = Train::new(&mut sim);
runner
.inputs(input_count)
.outputs(output_count as i32)
.iterations(nb_generations as i32)
.max_layers((hidden_layers + 2) as i32)
.max_per_layers(hidden_layers as i32)
.max_species(max_species as i32)
.max_individuals(max_individuals as i32)
.delta_threshold(2.) // Delta parameter from NEAT paper
.formula(0.8, 0.8, 0.3) // c1, c2 and c3 from NEAT paper
.access_train_object(Box::new(|train| {
let species_count = train.species_count();
println!("Species count: {}", species_count);
})) // Callback called after `reset_players` that gives you access to the train object during training
.start(); // .start_async().await for async version
}