- 
          
 - 
                Notifications
    
You must be signed in to change notification settings  - Fork 688
 
Open
Description
I noticed the following with Sage 4.3.5:
sage: R = GF(9,name='x')
sage: Q.<x> = PolynomialRing(GF(3))
sage: R2 = GF(9,name='x',modulus=x^2+1)
sage: a=R(x+1)
sage: R2(a)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
/users/caramel/zimmerma/svn/sagebook/tex/<ipython console> in <module>()
/usr/local/sage-core2/local/lib/python2.6/site-packages/sage/rings/finite_field_givaro.so in sage.rings.finite_field_givaro.FiniteField_givaro.__call__ (sage/rings/finite_field_givaro.cpp:4754)()
TypeError: unable to coerce from a finite field other than the prime subfield
This is ok since indeed a=x+1 is not in the prime subfield.
But:
sage: b=R(1)
sage: R2(b)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
/users/caramel/zimmerma/svn/sagebook/tex/<ipython console> in <module>()
/usr/local/sage-core2/local/lib/python2.6/site-packages/sage/rings/finite_field_givaro.so in sage.rings.finite_field_givaro.FiniteField_givaro.__call__ (sage/rings/finite_field_givaro.cpp:4754)()
TypeError: unable to coerce from a finite field other than the prime subfield
In this case b=1 is in the prime subfield!!!
Side question: is there a (simple) way to get the isomorphism between R and R2?
CC: @JohnCremona @jpflori @defeo @pjbruin
Component: basic arithmetic
Keywords: sd51
Issue created by migration from https://trac.sagemath.org/ticket/8751