-
-
Notifications
You must be signed in to change notification settings - Fork 697
Open
Description
sage: R.<x> = PolynomialRing(ZZ)
sage: p, q = 4 + 3*x + x^2, 1 + x^2
sage: I = R.ideal([p, q])
sage: S = R.quotient_ring(I)
sage: S(p) == S(0)
False
This is plain wrong !
sage: p in I
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
/tmp/<ipython console> in <module>()
/home/data/Sage-Install/sage-5.6.rc1/local/lib/python2.7/site-packages/sage/rings/ideal.pyc in __contains__(self, x)
316 def __contains__(self, x):
317 try:
--> 318 return self._contains_(self.__ring(x))
319 except TypeError:
320 return False
/home/data/Sage-Install/sage-5.6.rc1/local/lib/python2.7/site-packages/sage/rings/ideal.pyc in _contains_(self, x)
322 def _contains_(self, x):
323 # check if x, which is assumed to be in the ambient ring, is actually in this ideal.
--> 324 raise NotImplementedError
325
326 def __nonzero__(self):
NotImplementedError:
Florent
CC: @sagetrac-jakobkroeker
Component: algebra
Keywords: Ideal, univariate polynomial
Stopgaps: wrongAnswerMarker
Issue created by migration from https://trac.sagemath.org/ticket/13999