-
-
Notifications
You must be signed in to change notification settings - Fork 697
Closed
Description
As reported on sage-support, integral_points can miss solutions:
sage: E=EllipticCurve([0,-82569375])
sage: E.integral_points(verbose=True)
Using mw_basis [(450 : 2925 : 1), (900 : 25425 : 1), (1800 : 75825 : 1), (4600/9 : 192725/27 : 1)]
e1,e2,e3: -217.725687258292 - 377.111952444214*I -217.725687258292 + 377.111952444214*I 435.451374516585
Minimal eigenvalue of height pairing matrix: 2.03352484556965
x-coords of points on non-compact component with 436 <=x<= 870
[436, 450, 666]
starting search of remaining points using coefficient bound 4
x-coords of extra integral points:
[436, 450, 666, 900, 1150, 1800, 2619, 26154, 27675]
Total number of integral points: 9
[(436 : 559 : 1), (450 : 2925 : 1), (666 : 14589 : 1), (900 : 25425 : 1), (1150 : 37925 : 1), (1800 : 75825 : 1), (2619 : 133722 : 1), (26154 : 4229667 : 1), (27675 : 4603950 : 1)]
but
sage: 20477027135825**2==748476100**3-82569375
True
The (only?) missing solution can be found by increasing the precision in integral_points_with_bounded_mw_coeffs from 100 to 120:
[(436 : 559 : 1), (450 : 2925 : 1), (666 : 14589 : 1), (900 : 25425 : 1), (1150 : 37925 : 1), (1800 : 75825 : 1), (2619 : 133722 : 1), (26154 : 4229667 : 1), (27675 : 4603950 : 1), (748476100 : 20477027135825 : 1)]
but obviously this isn't robust. With a bit of tweaking (and maybe some RealIntervalFieldElements) we could ensure that we use sufficient precision without hardcoding an arbitrary parameter.
Component: elliptic curves
Reviewer: Travis Scrimshaw
Issue created by migration from https://trac.sagemath.org/ticket/12095