Remote Controller Architecture - Replit serves as lightweight controller, all heavy processing on AWS.
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────────┐
│ Replit │ │ AWS │ │ Data Sources │
│ (Controller) │ │ (Processing) │ │ │
│ │ │ │ │ │
│ • Telegram Bot │◄──►│ • SageMaker │◄──►│ • Kaggle Datasets │
│ • AWS Clients │ │ • Lambda │ │ • Sports APIs │
│ • Validation │ │ • S3 Storage │ │ • Real-time feeds │
│ • Monitoring │ │ • EC2 Compute │ │ │
└─────────────────┘ └──────────────────┘ └─────────────────────┘
# User provides AWS credentials via .env
cp .env.template .env
# Fill in your AWS keys, bucket names, Lambda functions# Lightweight dependencies only
pip install -r requirements.txt
# Start remote controller
python main.py- SageMaker: Train ensemble models (TensorFlow, PyTorch, XGBoost)
- Lambda: Handle predictions and data uploads
- S3: Store Kaggle datasets and trained models
- EC2: Optional for larger model inference
/predict Manchester United vs Liverpool
/compare Djokovic vs Nadal
/train football
/status
- ⚽ Football (Premier League, La Liga, etc.)
- 🏈 American Sports (NFL, NBA, MLB, NHL)
- 🥊 Combat Sports (UFC, Boxing, MMA)
- 🏏 Cricket (T20, ODI, Test)
- 🎾 Tennis (ATP/WTA)
- 🏉 Rugby (Union/League)
✅ Prevents cross-sport comparisons ("Tyson vs Chelsea")
✅ Validates team/player names
✅ Checks sport compatibility
✅ Rejects nonsensical matchups
- Kaggle → S3: Lambda downloads datasets, uploads to S3
- S3 → SageMaker: Training jobs read from S3
- Models → S3: Trained models stored in S3
- Replit → Lambda: Prediction requests via API calls
- NO LOCAL PROCESSING: All ML operations on AWS
- NO SYNTHETIC DATA: Real Kaggle datasets only
- REMOTE CONTROLLER: Replit only manages AWS operations
- USER PROVIDES: AWS keys when ready for deployment
├── src/
│ ├── aws_controller.py # AWS service management
│ ├── telegram_bot.py # Bot interface
│ └── sport_validator.py # Input validation
├── main.py # Entry point
├── requirements.txt # Lightweight deps only
├── .env.template # AWS config template
└── README.md # This file
- User provides AWS credentials
- Deploy AWS infrastructure (SageMaker, Lambda, S3)
- Configure Telegram bot token
- Start remote controller:
python main.py
Ready for immediate AWS deployment! 🚀