Spring Cloud Function is a project with the following high-level goals:
-
Promote the implementation of business logic via functions.
-
Decouple the development lifecycle of business logic from any specific runtime target so that the same code can run as a web endpoint, a stream processor, or a task.
-
Support a uniform programming model across serverless providers, as well as the ability to run standalone (locally or in a PaaS).
-
Enable Spring Boot features (auto-configuration, dependency injection, metrics) on serverless providers.
It abstracts away all of the transport details and infrastructure, allowing the developer to keep all the familiar tools and processes, and focus firmly on business logic.
Here’s a complete, executable, testable Spring Boot application (implementing a simple string manipulation):
@SpringBootApplication
public class Application {
@Bean
public Function<Flux<String>, Flux<String>> uppercase() {
return flux -> flux.map(value -> value.toUpperCase());
}
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}
It’s just a Spring Boot application, so it can be built, run and
tested, locally and in a CI build, the same way as any other Spring
Boot application. The Function
is from java.util
and Flux
is a
Reactive Streams Publisher
from
Project Reactor. The function can be
accessed over HTTP or messaging.
Spring Cloud Function has 4 main features:
-
Wrappers for
@Beans
of typeFunction
,Consumer
andSupplier
, exposing them to the outside world as either HTTP endpoints and/or message stream listeners/publishers with RabbitMQ, Kafka etc. -
Compiling strings which are Java function bodies into bytecode, and then turning them into
@Beans
that can be wrapped as above. -
Deploying a JAR file containing such an application context with an isolated classloader, so that you can pack them together in a single JVM.
-
Adapters for AWS Lambda, Apache OpenWhisk and possibly other "serverless" service providers.
Build from the command line (and "install" the samples):
$ ./mvnw clean install
(If you like to YOLO add -DskipTests
.)
Run one of the samples, e.g.
$ java -jar spring-cloud-function-samples/function-sample/target/*.jar
This runs the app and exposes its functions over HTTP, so you can convert a string to uppercase, like this:
$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d Hello HELLO
You can convert multiple strings (a Flux<String>
) by separating them
with new lines
$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d 'Hello > World' HELLOWORLD
(You can use QJ
in a terminal to insert a new line in a literal
string like that.)
The sample @SpringBootApplication
above has a function that can be
decorated at runtime by Spring Cloud Function to be an HTTP endpoint,
or a Stream processor, for instance with RabbitMQ, Apache Kafka or
JMS.
The @Beans
can be Function
, Consumer
or Supplier
(all from
java.util
), and their parametric types can be String or POJO. A
Function
is exposed as an HTTP POST if spring-cloud-function-web
is on the classpath, and as a Spring Cloud Stream Processor
if
spring-cloud-function-stream
is on the classpath and a
spring.cloud.function.stream.endpoint
property is configured in the Spring
environment. A Consumer
is also exposed as an HTTP POST, or as a Stream
Sink
. A Supplier
translates to an HTTP GET, or a Stream Source
.
Functions can be of Flux<String>
or Flux<Pojo>
and Spring Cloud
Function takes care of converting the data to and from the desired
types, as long as it comes in as plain text or (in the case of the
POJO) JSON. TBD: support for Flux<Message<Pojo>>
and maybe plain
Pojo
types (Fluxes implied and implemented by the framework).
Functions can be grouped together in a single application, or deployed one-per-jar. It’s up to the developer to choose. An app with multiple functions can be deployed multiple times in different "personalities", exposing different functions over different physical transports.
To run these examples, change into the scripts
directory:
cd scripts
Also, start a RabbitMQ server locally (e.g. execute rabbitmq-server
).
./registerFunction.sh -n uppercase -f "f->f.map(s->s.toString().toUpperCase())"
./web.sh -f uppercase -p 9000 curl -H "Content-Type: text/plain" -H "Accept: text/plain" localhost:9000/uppercase -d foo
./web.sh -s words -p 9001 curl -H "Accept: application/json" localhost:9001/words
./web.sh -c print -p 9002 curl -X POST -H "Content-Type: text/plain" -d foo localhost:9002/print
First register a streaming words supplier:
./registerSupplier.sh -n wordstream -f "()->Flux.intervalMillis(1000).map(i->\"message-\"+i)"
Then start the source (supplier), processor (function), and sink (consumer) apps (in reverse order):
./stream.sh -p 9103 -i uppercaseWords -c print ./stream.sh -p 9102 -i words -f uppercase -o uppercaseWords ./stream.sh -p 9101 -s wordstream -o words
The output will appear in the console of the sink app (one message per second, converted to uppercase):
MESSAGE-0 MESSAGE-1 MESSAGE-2 MESSAGE-3 MESSAGE-4 MESSAGE-5 MESSAGE-6 MESSAGE-7 MESSAGE-8 MESSAGE-9 ...
To build the source you will need to install JDK 1.7.
Spring Cloud uses Maven for most build-related activities, and you should be able to get off the ground quite quickly by cloning the project you are interested in and typing
$ ./mvnw install
Note
|
You can also install Maven (>=3.3.3) yourself and run the mvn command
in place of ./mvnw in the examples below. If you do that you also
might need to add -P spring if your local Maven settings do not
contain repository declarations for spring pre-release artifacts.
|
Note
|
Be aware that you might need to increase the amount of memory
available to Maven by setting a MAVEN_OPTS environment variable with
a value like -Xmx512m -XX:MaxPermSize=128m . We try to cover this in
the .mvn configuration, so if you find you have to do it to make a
build succeed, please raise a ticket to get the settings added to
source control.
|
For hints on how to build the project look in .travis.yml
if there
is one. There should be a "script" and maybe "install" command. Also
look at the "services" section to see if any services need to be
running locally (e.g. mongo or rabbit). Ignore the git-related bits
that you might find in "before_install" since they’re related to setting git
credentials and you already have those.
The projects that require middleware generally include a
docker-compose.yml
, so consider using
Docker Compose to run the middeware servers
in Docker containers. See the README in the
scripts demo
repository for specific instructions about the common cases of mongo,
rabbit and redis.
Note
|
If all else fails, build with the command from .travis.yml (usually
./mvnw install ).
|
The spring-cloud-build module has a "docs" profile, and if you switch
that on it will try to build asciidoc sources from
src/main/asciidoc
. As part of that process it will look for a
README.adoc
and process it by loading all the includes, but not
parsing or rendering it, just copying it to ${main.basedir}
(defaults to ${basedir}
, i.e. the root of the project). If there are
any changes in the README it will then show up after a Maven build as
a modified file in the correct place. Just commit it and push the change.
If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.
We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse marketplace".
Note
|
Older versions of m2e do not support Maven 3.3, so once the
projects are imported into Eclipse you will also need to tell
m2eclipse to use the right profile for the projects. If you
see many different errors related to the POMs in the projects, check
that you have an up to date installation. If you can’t upgrade m2e,
add the "spring" profile to your settings.xml . Alternatively you can
copy the repository settings from the "spring" profile of the parent
pom into your settings.xml .
|
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard Github development process, using Github tracker for issues and merging pull requests into master. If you want to contribute even something trivial please do not hesitate, but follow the guidelines below.
Before we accept a non-trivial patch or pull request we will need you to sign the Contributor License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but it does mean that we can accept your contributions, and you will get an author credit if we do. Active contributors might be asked to join the core team, and given the ability to merge pull requests.
This project adheres to the Contributor Covenant code of conduct. By participating, you are expected to uphold this code. Please report unacceptable behavior to [email protected].
None of these is essential for a pull request, but they will all help. They can also be added after the original pull request but before a merge.
-
Use the Spring Framework code format conventions. If you use Eclipse you can import formatter settings using the
eclipse-code-formatter.xml
file from the Spring Cloud Build project. If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file. -
Make sure all new
.java
files to have a simple Javadoc class comment with at least an@author
tag identifying you, and preferably at least a paragraph on what the class is for. -
Add the ASF license header comment to all new
.java
files (copy from existing files in the project) -
Add yourself as an
@author
to the .java files that you modify substantially (more than cosmetic changes). -
Add some Javadocs and, if you change the namespace, some XSD doc elements.
-
A few unit tests would help a lot as well — someone has to do it.
-
If no-one else is using your branch, please rebase it against the current master (or other target branch in the main project).
-
When writing a commit message please follow these conventions, if you are fixing an existing issue please add
Fixes gh-XXXX
at the end of the commit message (where XXXX is the issue number).