Skip to content

Commit

Permalink
Rng renames: gen_ → random_ (#1505)
Browse files Browse the repository at this point in the history
  • Loading branch information
dhardy authored Oct 16, 2024
1 parent 9d57b87 commit 8225d94
Show file tree
Hide file tree
Showing 17 changed files with 194 additions and 168 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ You may also find the [Upgrade Guide](https://rust-random.github.io/book/update.
- Rename `Rng::gen_iter` to `random_iter` (#1500)
- Rename `rand::thread_rng()` to `rand::rng()`, and remove from the prelude (#1506)
- Remove `rand::random()` from the prelude (#1506)
- Rename `Rng::gen_range` to `random_range`, `gen_bool` to `random_bool`, `gen_ratio` to `random_ratio` (#1505)

## [0.9.0-alpha.1] - 2024-03-18
- Add the `Slice::num_choices` method to the Slice distribution (#1402)
Expand Down
2 changes: 1 addition & 1 deletion benches/benches/array.rs
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ criterion_group!(
criterion_main!(benches);

pub fn bench(c: &mut Criterion) {
let mut g = c.benchmark_group("gen_1kb");
let mut g = c.benchmark_group("random_1kb");
g.throughput(criterion::Throughput::Bytes(1024));

g.bench_function("u16_iter_repeat", |b| {
Expand Down
14 changes: 7 additions & 7 deletions benches/benches/bool.rs
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ criterion_group!(
criterion_main!(benches);

pub fn bench(c: &mut Criterion) {
let mut g = c.benchmark_group("gen_bool");
let mut g = c.benchmark_group("random_bool");
g.sample_size(1000);
g.warm_up_time(core::time::Duration::from_millis(500));
g.measurement_time(core::time::Duration::from_millis(1000));
Expand All @@ -33,25 +33,25 @@ pub fn bench(c: &mut Criterion) {

g.bench_function("const", |b| {
let mut rng = Pcg32::from_rng(&mut rand::rng());
b.iter(|| rng.gen_bool(0.18))
b.iter(|| rng.random_bool(0.18))
});

g.bench_function("var", |b| {
let mut rng = Pcg32::from_rng(&mut rand::rng());
let p = rng.random();
b.iter(|| rng.gen_bool(p))
b.iter(|| rng.random_bool(p))
});

g.bench_function("ratio_const", |b| {
let mut rng = Pcg32::from_rng(&mut rand::rng());
b.iter(|| rng.gen_ratio(2, 3))
b.iter(|| rng.random_ratio(2, 3))
});

g.bench_function("ratio_var", |b| {
let mut rng = Pcg32::from_rng(&mut rand::rng());
let d = rng.gen_range(1..=100);
let n = rng.gen_range(0..=d);
b.iter(|| rng.gen_ratio(n, d));
let d = rng.random_range(1..=100);
let n = rng.random_range(0..=d);
b.iter(|| rng.random_ratio(n, d));
});

g.bench_function("bernoulli_const", |b| {
Expand Down
14 changes: 7 additions & 7 deletions benches/benches/generators.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,12 @@ use rand_pcg::{Pcg32, Pcg64, Pcg64Dxsm, Pcg64Mcg};
criterion_group!(
name = benches;
config = Criterion::default();
targets = gen_bytes, gen_u32, gen_u64, init_gen, init_from_u64, init_from_seed, reseeding_bytes
targets = random_bytes, random_u32, random_u64, init_gen, init_from_u64, init_from_seed, reseeding_bytes
);
criterion_main!(benches);

pub fn gen_bytes(c: &mut Criterion) {
let mut g = c.benchmark_group("gen_bytes");
pub fn random_bytes(c: &mut Criterion) {
let mut g = c.benchmark_group("random_bytes");
g.warm_up_time(Duration::from_millis(500));
g.measurement_time(Duration::from_millis(1000));
g.throughput(criterion::Throughput::Bytes(1024));
Expand Down Expand Up @@ -55,8 +55,8 @@ pub fn gen_bytes(c: &mut Criterion) {
g.finish()
}

pub fn gen_u32(c: &mut Criterion) {
let mut g = c.benchmark_group("gen_u32");
pub fn random_u32(c: &mut Criterion) {
let mut g = c.benchmark_group("random_u32");
g.sample_size(1000);
g.warm_up_time(Duration::from_millis(500));
g.measurement_time(Duration::from_millis(1000));
Expand Down Expand Up @@ -84,8 +84,8 @@ pub fn gen_u32(c: &mut Criterion) {
g.finish()
}

pub fn gen_u64(c: &mut Criterion) {
let mut g = c.benchmark_group("gen_u64");
pub fn random_u64(c: &mut Criterion) {
let mut g = c.benchmark_group("random_u64");
g.sample_size(1000);
g.warm_up_time(Duration::from_millis(500));
g.measurement_time(Duration::from_millis(1000));
Expand Down
2 changes: 1 addition & 1 deletion rand_distr/src/weighted_tree.rs
Original file line number Diff line number Diff line change
Expand Up @@ -251,7 +251,7 @@ impl<W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight>
if total_weight == W::ZERO {
return Err(WeightError::InsufficientNonZero);
}
let mut target_weight = rng.gen_range(W::ZERO..total_weight);
let mut target_weight = rng.random_range(W::ZERO..total_weight);
let mut index = 0;
loop {
// Maybe descend into the left sub tree.
Expand Down
4 changes: 2 additions & 2 deletions src/distr/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@
//! # Non-uniform sampling
//!
//! Sampling a simple true/false outcome with a given probability has a name:
//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]).
//! the [`Bernoulli`] distribution (this is used by [`Rng::random_bool`]).
//!
//! For weighted sampling from a sequence of discrete values, use the
//! [`WeightedIndex`] distribution.
Expand Down Expand Up @@ -204,7 +204,7 @@ use crate::Rng;
/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`.
///
/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which
/// samples from `(0, 1]` and `Rng::gen_range(0..1)` which also samples from
/// samples from `(0, 1]` and `Rng::random_range(0..1)` which also samples from
/// `[0, 1)`. Note that `Open01` uses transmute-based methods which yield 1 bit
/// less precision but may perform faster on some architectures (on modern Intel
/// CPUs all methods have approximately equal performance).
Expand Down
14 changes: 7 additions & 7 deletions src/distr/uniform.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
//!
//! [`Uniform`] is the standard distribution to sample uniformly from a range;
//! e.g. `Uniform::new_inclusive(1, 6).unwrap()` can sample integers from 1 to 6, like a
//! standard die. [`Rng::gen_range`] supports any type supported by [`Uniform`].
//! standard die. [`Rng::random_range`] supports any type supported by [`Uniform`].
//!
//! This distribution is provided with support for several primitive types
//! (all integer and floating-point types) as well as [`std::time::Duration`],
Expand All @@ -33,7 +33,7 @@
//! let side = Uniform::new(-10.0, 10.0).unwrap();
//!
//! // sample between 1 and 10 points
//! for _ in 0..rng.gen_range(1..=10) {
//! for _ in 0..rng.random_range(1..=10) {
//! // sample a point from the square with sides -10 - 10 in two dimensions
//! let (x, y) = (rng.sample(side), rng.sample(side));
//! println!("Point: {}, {}", x, y);
Expand Down Expand Up @@ -154,7 +154,7 @@ use serde::{Deserialize, Serialize};
/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
/// distribution sampling from the given range; these functions may do extra
/// work up front to make sampling of multiple values faster. If only one sample
/// from the range is required, [`Rng::gen_range`] can be more efficient.
/// from the range is required, [`Rng::random_range`] can be more efficient.
///
/// When sampling from a constant range, many calculations can happen at
/// compile-time and all methods should be fast; for floating-point ranges and
Expand Down Expand Up @@ -186,18 +186,18 @@ use serde::{Deserialize, Serialize};
/// println!("{}", sum);
/// ```
///
/// For a single sample, [`Rng::gen_range`] may be preferred:
/// For a single sample, [`Rng::random_range`] may be preferred:
///
/// ```
/// use rand::Rng;
///
/// let mut rng = rand::rng();
/// println!("{}", rng.gen_range(0..10));
/// println!("{}", rng.random_range(0..10));
/// ```
///
/// [`new`]: Uniform::new
/// [`new_inclusive`]: Uniform::new_inclusive
/// [`Rng::gen_range`]: Rng::gen_range
/// [`Rng::random_range`]: Rng::random_range
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound(serialize = "X::Sampler: Serialize")))]
Expand Down Expand Up @@ -406,7 +406,7 @@ where
/// Range that supports generating a single sample efficiently.
///
/// Any type implementing this trait can be used to specify the sampled range
/// for `Rng::gen_range`.
/// for `Rng::random_range`.
pub trait SampleRange<T> {
/// Generate a sample from the given range.
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error>;
Expand Down
2 changes: 1 addition & 1 deletion src/distr/uniform_float.rs
Original file line number Diff line number Diff line change
Expand Up @@ -364,7 +364,7 @@ mod tests {
#[should_panic]
fn test_float_overflow_single() {
let mut rng = crate::test::rng(252);
rng.gen_range(f64::MIN..f64::MAX);
rng.random_range(f64::MIN..f64::MAX);
}

#[test]
Expand Down
2 changes: 1 addition & 1 deletion src/distr/uniform_other.rs
Original file line number Diff line number Diff line change
Expand Up @@ -265,7 +265,7 @@ mod tests {
let mut rng = crate::test::rng(891);
let mut max = core::char::from_u32(0).unwrap();
for _ in 0..100 {
let c = rng.gen_range('A'..='Z');
let c = rng.random_range('A'..='Z');
assert!(c.is_ascii_uppercase());
max = max.max(c);
}
Expand Down
Loading

0 comments on commit 8225d94

Please sign in to comment.