-
Notifications
You must be signed in to change notification settings - Fork 12.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
stabilize member constraints #84701
stabilize member constraints #84701
Conversation
r? @varkor (rust-highfive has picked a reviewer for you, use r? to override) |
I've marked this for @rust-lang/lang, but I'd like to cc @rust-lang/compiler, @rust-lang/wg-traits, and especially @matthewjasper for comment. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Small typo.
But overall, this seems extremely straightforward to me. From a language design standpoint, I don't see why the lifetimes in an impl Trait
should have to relate to each other (we don't have that requirement for structs, for example). From a implementation standpoint, the fact that this has been effectively stable in async fn
s provides good evidence the correct implementation is as correct as it can be and that this is worth stabilizing more generally.
d6a7603
to
4dc3316
Compare
@rfcbot fcp merge As discussed in the lang-team meeting. |
Team member @nikomatsakis has proposed to merge this. The next step is review by the rest of the tagged team members: No concerns currently listed. Once a majority of reviewers approve (and at most 2 approvals are outstanding), this will enter its final comment period. If you spot a major issue that hasn't been raised at any point in this process, please speak up! See this document for info about what commands tagged team members can give me. |
🔔 This is now entering its final comment period, as per the review above. 🔔 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Stabilization PR here is pretty simple (as it should be). One comment, but r=me on this when FCP finishes
☔ The latest upstream changes (presumably #85458) made this pull request unmergeable. Please resolve the merge conflicts. |
The final comment period, with a disposition to merge, as per the review above, is now complete. As the automated representative of the governance process, I would like to thank the author for their work and everyone else who contributed. The RFC will be merged soon. |
2747857
to
a937f25
Compare
@bors r=jackh726 |
📌 Commit a937f25 has been approved by |
…raints-61997, r=jackh726 stabilize member constraints Stabilizes the use of "member constraints" in solving `impl Trait` bindings. This is a step towards stabilizing a "MVP" of "named impl Trait". # Member constraint stabilization report | Info | | | --- | --- | | Tracking issue | [rust-lang#61997](rust-lang#61997) | | Implementation history | [rust-lang#61775] | | rustc-dev-guide coverage | [link](https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html) | | Complications | [rust-lang#61773] | [rust-lang#61775]: rust-lang#61775 [rust-lang#61773]: rust-lang#61773 ## Background Member constraints are an extension to our region solver that was introduced to make async fn region solving tractable. There are used in situations like the following: ```rust fn foo<'a, 'b>(...) -> impl Trait<'a, 'b> { .. } ``` The problem here is that every region R in the hidden type must be equal to *either* `'a` *or* `'b` (or `'static`). This cannot be expressed simply via 'outlives constriants' like `R: 'a`. Therefore, we introduce a 'member constraint' `R member of ['a, 'b]`. These constraints were introduced in [rust-lang#61775]. At the time, we kept them feature gated and used them only for `impl Trait` return types that are derived from `async fn`. The intention, however, was always to support them in other contexts once we had time to gain more experience with them. **In the time since their introduction, we have encountered no surprises or bugs due to these member constraints.** They are tested extensively as part of every async function that involves multiple unrelated lifetimes in its arguments. ## Tests The behavior of member constraints is covered by the following tests: * [`src/test/ui/async-await/multiple-lifetimes`](https://github.com/rust-lang/rust/tree/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes) -- tests using the async await, which are mostly already stabilized * [`src/test/ui/impl-trait/multiple-lifetimes.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes.rs) * [`src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs) * [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs) * [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs) These tests cover a number of scenarios: * `-> implTrait<'a, 'b>` with unrelated lifetimes `'a` and `'b`, as described above * `async fn` that returns an `impl Trait` like the previous case, which desugars to a kind of "nested" impl trait like `impl Future<Output = impl Trait<'a, 'b>>` ## Potential concerns There is a potential interaction with `impl Trait` on local variables, described in [rust-lang#61773]. The challenge is that if you have a program like: ```rust= trait Foo<'_> { } impl Foo<'_> for &u32 { } fn bar() { let x: impl Foo<'_> = &44; // let's call the region variable for `'_` `'1` } ``` then we would wind up with `'0 member of ['1, 'static]`, where `'0` is the region variable in the hidden type (`&'0 u32`) and `'1` is the region variable in the bounds `Foo<'1>`. This is tricky because both `'0` and `'1` are being inferred -- so making them equal may have other repercussions. That said, `impl Trait` in bindings are not stable, and the implementation is pretty far from stabilization. Moreover, the difficulty highlighted here is not due to the presence of member constraints -- it's inherent to the design of the language. In other words, stabilizing member constraints does not actually cause us to accept anything that would make this problem any harder. So I don't see this as a blocker to stabilization of member constraints; it is potentially a blocker to stablization of `impl trait` in let bindings.
⌛ Testing commit a937f25 with merge 6ea940b75105c23bcd7049a64b6a2cfe8e9cf8aa... |
This comment has been minimized.
This comment has been minimized.
💔 Test failed - checks-actions |
(the |
a937f25
to
be4ae9d
Compare
be4ae9d
to
128d385
Compare
@bors r=jackh726 |
📌 Commit b3054d2 has been approved by |
…raints-61997, r=jackh726 stabilize member constraints Stabilizes the use of "member constraints" in solving `impl Trait` bindings. This is a step towards stabilizing a "MVP" of "named impl Trait". # Member constraint stabilization report | Info | | | --- | --- | | Tracking issue | [rust-lang#61997](rust-lang#61997) | | Implementation history | [rust-lang#61775] | | rustc-dev-guide coverage | [link](https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html) | | Complications | [rust-lang#61773] | [rust-lang#61775]: rust-lang#61775 [rust-lang#61773]: rust-lang#61773 ## Background Member constraints are an extension to our region solver that was introduced to make async fn region solving tractable. There are used in situations like the following: ```rust fn foo<'a, 'b>(...) -> impl Trait<'a, 'b> { .. } ``` The problem here is that every region R in the hidden type must be equal to *either* `'a` *or* `'b` (or `'static`). This cannot be expressed simply via 'outlives constriants' like `R: 'a`. Therefore, we introduce a 'member constraint' `R member of ['a, 'b]`. These constraints were introduced in [rust-lang#61775]. At the time, we kept them feature gated and used them only for `impl Trait` return types that are derived from `async fn`. The intention, however, was always to support them in other contexts once we had time to gain more experience with them. **In the time since their introduction, we have encountered no surprises or bugs due to these member constraints.** They are tested extensively as part of every async function that involves multiple unrelated lifetimes in its arguments. ## Tests The behavior of member constraints is covered by the following tests: * [`src/test/ui/async-await/multiple-lifetimes`](https://github.com/rust-lang/rust/tree/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes) -- tests using the async await, which are mostly already stabilized * [`src/test/ui/impl-trait/multiple-lifetimes.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes.rs) * [`src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs) * [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs) * [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs) These tests cover a number of scenarios: * `-> implTrait<'a, 'b>` with unrelated lifetimes `'a` and `'b`, as described above * `async fn` that returns an `impl Trait` like the previous case, which desugars to a kind of "nested" impl trait like `impl Future<Output = impl Trait<'a, 'b>>` ## Potential concerns There is a potential interaction with `impl Trait` on local variables, described in [rust-lang#61773]. The challenge is that if you have a program like: ```rust= trait Foo<'_> { } impl Foo<'_> for &u32 { } fn bar() { let x: impl Foo<'_> = &44; // let's call the region variable for `'_` `'1` } ``` then we would wind up with `'0 member of ['1, 'static]`, where `'0` is the region variable in the hidden type (`&'0 u32`) and `'1` is the region variable in the bounds `Foo<'1>`. This is tricky because both `'0` and `'1` are being inferred -- so making them equal may have other repercussions. That said, `impl Trait` in bindings are not stable, and the implementation is pretty far from stabilization. Moreover, the difficulty highlighted here is not due to the presence of member constraints -- it's inherent to the design of the language. In other words, stabilizing member constraints does not actually cause us to accept anything that would make this problem any harder. So I don't see this as a blocker to stabilization of member constraints; it is potentially a blocker to stablization of `impl trait` in let bindings.
…raints-61997, r=jackh726 stabilize member constraints Stabilizes the use of "member constraints" in solving `impl Trait` bindings. This is a step towards stabilizing a "MVP" of "named impl Trait". # Member constraint stabilization report | Info | | | --- | --- | | Tracking issue | [rust-lang#61997](rust-lang#61997) | | Implementation history | [rust-lang#61775] | | rustc-dev-guide coverage | [link](https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/member_constraints.html) | | Complications | [rust-lang#61773] | [rust-lang#61775]: rust-lang#61775 [rust-lang#61773]: rust-lang#61773 ## Background Member constraints are an extension to our region solver that was introduced to make async fn region solving tractable. There are used in situations like the following: ```rust fn foo<'a, 'b>(...) -> impl Trait<'a, 'b> { .. } ``` The problem here is that every region R in the hidden type must be equal to *either* `'a` *or* `'b` (or `'static`). This cannot be expressed simply via 'outlives constriants' like `R: 'a`. Therefore, we introduce a 'member constraint' `R member of ['a, 'b]`. These constraints were introduced in [rust-lang#61775]. At the time, we kept them feature gated and used them only for `impl Trait` return types that are derived from `async fn`. The intention, however, was always to support them in other contexts once we had time to gain more experience with them. **In the time since their introduction, we have encountered no surprises or bugs due to these member constraints.** They are tested extensively as part of every async function that involves multiple unrelated lifetimes in its arguments. ## Tests The behavior of member constraints is covered by the following tests: * [`src/test/ui/async-await/multiple-lifetimes`](https://github.com/rust-lang/rust/tree/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes) -- tests using the async await, which are mostly already stabilized * [`src/test/ui/impl-trait/multiple-lifetimes.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes.rs) * [`src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs) * [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs) * [`src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs`](https://github.com/rust-lang/rust/blob/20e032e65007ff1376e8480c1fbdb0a5068028fa/src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs) These tests cover a number of scenarios: * `-> implTrait<'a, 'b>` with unrelated lifetimes `'a` and `'b`, as described above * `async fn` that returns an `impl Trait` like the previous case, which desugars to a kind of "nested" impl trait like `impl Future<Output = impl Trait<'a, 'b>>` ## Potential concerns There is a potential interaction with `impl Trait` on local variables, described in [rust-lang#61773]. The challenge is that if you have a program like: ```rust= trait Foo<'_> { } impl Foo<'_> for &u32 { } fn bar() { let x: impl Foo<'_> = &44; // let's call the region variable for `'_` `'1` } ``` then we would wind up with `'0 member of ['1, 'static]`, where `'0` is the region variable in the hidden type (`&'0 u32`) and `'1` is the region variable in the bounds `Foo<'1>`. This is tricky because both `'0` and `'1` are being inferred -- so making them equal may have other repercussions. That said, `impl Trait` in bindings are not stable, and the implementation is pretty far from stabilization. Moreover, the difficulty highlighted here is not due to the presence of member constraints -- it's inherent to the design of the language. In other words, stabilizing member constraints does not actually cause us to accept anything that would make this problem any harder. So I don't see this as a blocker to stabilization of member constraints; it is potentially a blocker to stablization of `impl trait` in let bindings.
Rollup of 8 pull requests Successful merges: - rust-lang#84221 (E0599 suggestions and elision of generic argument if no canditate is found) - rust-lang#84701 (stabilize member constraints) - rust-lang#85564 ( readd capture disjoint fields gate) - rust-lang#85583 (Get rid of PreviousDepGraph.) - rust-lang#85649 (Update cc) - rust-lang#85689 (Remove Iterator #[rustc_on_unimplemented]s that no longer apply.) - rust-lang#85719 (Add inline attr to CString::into_inner so it can optimize out NonNull checks) - rust-lang#85725 (Remove unneeded workaround) Failed merges: r? `@ghost` `@rustbot` modify labels: rollup
Pkgsrc changes: * Bump bootstrap requirements to 1.53.0. * Adjust patches, adapt to upstream changes, adjust cargo checksums * If using an external llvm, require >= 10.0 Upsteream changes: Version 1.54.0 (2021-07-29) ============================ Language ----------------------- - [You can now use macros for values in built-in attribute macros.][83366] While a seemingly minor addition on its own, this enables a lot of powerful functionality when combined correctly. Most notably you can now include external documentation in your crate by writing the following. ```rust #![doc = include_str!("README.md")] ``` You can also use this to include auto-generated modules: ```rust #[path = concat!(env!("OUT_DIR"), "/generated.rs")] mod generated; ``` - [You can now cast between unsized slice types (and types which contain unsized slices) in `const fn`.][85078] - [You can now use multiple generic lifetimes with `impl Trait` where the lifetimes don't explicitly outlive another.][84701] In code this means that you can now have `impl Trait<'a, 'b>` where as before you could only have `impl Trait<'a, 'b> where 'b: 'a`. Compiler ----------------------- - [Rustc will now search for custom JSON targets in `/lib/rustlib/<target-triple>/target.json` where `/` is the "sysroot" directory.][83800] You can find your sysroot directory by running `rustc --print sysroot`. - [Added `wasm` as a `target_family` for WebAssembly platforms.][84072] - [You can now use `#[target_feature]` on safe functions when targeting WebAssembly platforms.][84988] - [Improved debugger output for enums on Windows MSVC platforms.][85292] - [Added tier 3\* support for `bpfel-unknown-none` and `bpfeb-unknown-none`.][79608] \* Refer to Rust's [platform support page][platform-support-doc] for more information on Rust's tiered platform support. Libraries ----------------------- - [`panic::panic_any` will now `#[track_caller]`.][85745] - [Added `OutOfMemory` as a variant of `io::ErrorKind`.][84744] - [ `proc_macro::Literal` now implements `FromStr`.][84717] - [The implementations of vendor intrinsics in core::arch have been significantly refactored.][83278] The main user-visible changes are a 50% reduction in the size of libcore.rlib and stricter validation of constant operands passed to intrinsics. The latter is technically a breaking change, but allows Rust to more closely match the C vendor intrinsics API. Stabilized APIs --------------- - [`BTreeMap::into_keys`] - [`BTreeMap::into_values`] - [`HashMap::into_keys`] - [`HashMap::into_values`] - [`arch::wasm32`] - [`VecDeque::binary_search`] - [`VecDeque::binary_search_by`] - [`VecDeque::binary_search_by_key`] - [`VecDeque::partition_point`] Cargo ----- - [Added the `--prune <spec>` option to `cargo-tree` to remove a package from the dependency graph.][cargo/9520] - [Added the `--depth` option to `cargo-tree` to print only to a certain depth in the tree ][cargo/9499] - [Added the `no-proc-macro` value to `cargo-tree --edges` to hide procedural macro dependencies.][cargo/9488] - [A new environment variable named `CARGO_TARGET_TMPDIR` is available.][cargo/9375] This variable points to a directory that integration tests and benches can use as a "scratchpad" for testing filesystem operations. Compatibility Notes ------------------- - [Mixing Option and Result via `?` is no longer permitted in closures for inferred types.][86831] - [Previously unsound code is no longer permitted where different constructors in branches could require different lifetimes.][85574] - As previously mentioned the [`std::arch` instrinsics now uses stricter const checking][83278] than before and may reject some previously accepted code. - [`i128` multiplication on Cortex M0+ platforms currently unconditionally causes overflow when compiled with `codegen-units = 1`.][86063] [85574]: rust-lang/rust#85574 [86831]: rust-lang/rust#86831 [86063]: rust-lang/rust#86063 [86831]: rust-lang/rust#86831 [79608]: rust-lang/rust#79608 [84988]: rust-lang/rust#84988 [84701]: rust-lang/rust#84701 [84072]: rust-lang/rust#84072 [85745]: rust-lang/rust#85745 [84744]: rust-lang/rust#84744 [85078]: rust-lang/rust#85078 [84717]: rust-lang/rust#84717 [83800]: rust-lang/rust#83800 [83366]: rust-lang/rust#83366 [83278]: rust-lang/rust#83278 [85292]: rust-lang/rust#85292 [cargo/9520]: rust-lang/cargo#9520 [cargo/9499]: rust-lang/cargo#9499 [cargo/9488]: rust-lang/cargo#9488 [cargo/9375]: rust-lang/cargo#9375 [`BTreeMap::into_keys`]: https://doc.rust-lang.org/std/collections/struct.BTreeMap.html#method.into_keys [`BTreeMap::into_values`]: https://doc.rust-lang.org/std/collections/struct.BTreeMap.html#method.into_values [`HashMap::into_keys`]: https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.into_keys [`HashMap::into_values`]: https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.into_values [`arch::wasm32`]: https://doc.rust-lang.org/core/arch/wasm32/index.html [`VecDeque::binary_search`]: https://doc.rust-lang.org/std/collections/struct.VecDeque.html#method.binary_search [`VecDeque::binary_search_by`]: https://doc.rust-lang.org/std/collections/struct.VecDeque.html#method.binary_search_by [`VecDeque::binary_search_by_key`]: https://doc.rust-lang.org/std/collections/struct.VecDeque.html#method.binary_search_by_key [`VecDeque::partition_point`]: https://doc.rust-lang.org/std/collections/struct.VecDeque.html#method.partition_point
Stabilizes the use of "member constraints" in solving
impl Trait
bindings. This is a step towards stabilizing a "MVP" of "named impl Trait".Member constraint stabilization report
Background
Member constraints are an extension to our region solver that was introduced to make async fn region solving tractable. There are used in situations like the following:
The problem here is that every region R in the hidden type must be equal to either
'a
or'b
(or'static
). This cannot be expressed simply via 'outlives constriants' likeR: 'a
. Therefore, we introduce a 'member constraint'R member of ['a, 'b]
.These constraints were introduced in rust-lang/rust#61775. At the time, we kept them feature gated and used them only for
impl Trait
return types that are derived fromasync fn
. The intention, however, was always to support them in other contexts once we had time to gain more experience with them.In the time since their introduction, we have encountered no surprises or bugs due to these member constraints. They are tested extensively as part of every async function that involves multiple unrelated lifetimes in its arguments.
Tests
The behavior of member constraints is covered by the following tests:
src/test/ui/async-await/multiple-lifetimes
-- tests using the async await, which are mostly already stabilizedsrc/test/ui/impl-trait/multiple-lifetimes.rs
src/test/ui/impl-trait/multiple-lifetimes/ordinary-bounds-unsuited.rs
src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-fg.rs
src/test/ui/async-await/multiple-lifetimes/ret-impl-trait-one.rs
These tests cover a number of scenarios:
-> implTrait<'a, 'b>
with unrelated lifetimes'a
and'b
, as described aboveasync fn
that returns animpl Trait
like the previous case, which desugars to a kind of "nested" impl trait likeimpl Future<Output = impl Trait<'a, 'b>>
Potential concerns
There is a potential interaction with
impl Trait
on local variables, described in rust-lang/rust#61773. The challenge is that if you have a program like:then we would wind up with
'0 member of ['1, 'static]
, where'0
is the region variable in the hidden type (&'0 u32
) and'1
is the region variable in the boundsFoo<'1>
. This is tricky because both'0
and'1
are being inferred -- so making them equal may have other repercussions.That said,
impl Trait
in bindings are not stable, and the implementation is pretty far from stabilization. Moreover, the difficulty highlighted here is not due to the presence of member constraints -- it's inherent to the design of the language. In other words, stabilizing member constraints does not actually cause us to accept anything that would make this problem any harder.So I don't see this as a blocker to stabilization of member constraints; it is potentially a blocker to stablization of
impl trait
in let bindings.