-
Notifications
You must be signed in to change notification settings - Fork 707
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Auto merge of #797 - photoszzt:sep_analysis, r=fitzgen
- Loading branch information
Showing
4 changed files
with
260 additions
and
256 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
//! Fix-point analyses on the IR using the monotone framework. | ||
use std::fmt; | ||
|
||
/// An analysis in the monotone framework. | ||
/// | ||
/// Implementors of this trait must maintain the following two invariants: | ||
/// | ||
/// 1. The concrete data must be a member of a finite-height lattice. | ||
/// 2. The concrete `constrain` method must be monotone: that is, | ||
/// if `x <= y`, then `constrain(x) <= constrain(y)`. | ||
/// | ||
/// If these invariants do not hold, iteration to a fix-point might never | ||
/// complete. | ||
/// | ||
/// For a simple example analysis, see the `ReachableFrom` type in the `tests` | ||
/// module below. | ||
pub trait MonotoneFramework: Sized + fmt::Debug { | ||
/// The type of node in our dependency graph. | ||
/// | ||
/// This is just generic (and not `ItemId`) so that we can easily unit test | ||
/// without constructing real `Item`s and their `ItemId`s. | ||
type Node: Copy; | ||
|
||
/// Any extra data that is needed during computation. | ||
/// | ||
/// Again, this is just generic (and not `&BindgenContext`) so that we can | ||
/// easily unit test without constructing real `BindgenContext`s full of | ||
/// real `Item`s and real `ItemId`s. | ||
type Extra: Sized; | ||
|
||
/// The final output of this analysis. Once we have reached a fix-point, we | ||
/// convert `self` into this type, and return it as the final result of the | ||
/// analysis. | ||
type Output: From<Self> + fmt::Debug; | ||
|
||
/// Construct a new instance of this analysis. | ||
fn new(extra: Self::Extra) -> Self; | ||
|
||
/// Get the initial set of nodes from which to start the analysis. Unless | ||
/// you are sure of some domain-specific knowledge, this should be the | ||
/// complete set of nodes. | ||
fn initial_worklist(&self) -> Vec<Self::Node>; | ||
|
||
/// Update the analysis for the given node. | ||
/// | ||
/// If this results in changing our internal state (ie, we discovered that | ||
/// we have not reached a fix-point and iteration should continue), return | ||
/// `true`. Otherwise, return `false`. When `constrain` returns false for | ||
/// all nodes in the set, we have reached a fix-point and the analysis is | ||
/// complete. | ||
fn constrain(&mut self, node: Self::Node) -> bool; | ||
|
||
/// For each node `d` that depends on the given `node`'s current answer when | ||
/// running `constrain(d)`, call `f(d)`. This informs us which new nodes to | ||
/// queue up in the worklist when `constrain(node)` reports updated | ||
/// information. | ||
fn each_depending_on<F>(&self, node: Self::Node, f: F) | ||
where F: FnMut(Self::Node); | ||
} | ||
|
||
/// Run an analysis in the monotone framework. | ||
pub fn analyze<Analysis>(extra: Analysis::Extra) -> Analysis::Output | ||
where Analysis: MonotoneFramework, | ||
{ | ||
let mut analysis = Analysis::new(extra); | ||
let mut worklist = analysis.initial_worklist(); | ||
|
||
while let Some(node) = worklist.pop() { | ||
if analysis.constrain(node) { | ||
analysis.each_depending_on(node, |needs_work| { | ||
worklist.push(needs_work); | ||
}); | ||
} | ||
} | ||
|
||
analysis.into() | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use std::collections::{HashMap, HashSet}; | ||
|
||
// Here we find the set of nodes that are reachable from any given | ||
// node. This is a lattice mapping nodes to subsets of all nodes. Our join | ||
// function is set union. | ||
// | ||
// This is our test graph: | ||
// | ||
// +---+ +---+ | ||
// | | | | | ||
// | 1 | .----| 2 | | ||
// | | | | | | ||
// +---+ | +---+ | ||
// | | ^ | ||
// | | | | ||
// | +---+ '------' | ||
// '----->| | | ||
// | 3 | | ||
// .------| |------. | ||
// | +---+ | | ||
// | ^ | | ||
// v | v | ||
// +---+ | +---+ +---+ | ||
// | | | | | | | | ||
// | 4 | | | 5 |--->| 6 | | ||
// | | | | | | | | ||
// +---+ | +---+ +---+ | ||
// | | | | | ||
// | | | v | ||
// | +---+ | +---+ | ||
// | | | | | | | ||
// '----->| 7 |<-----' | 8 | | ||
// | | | | | ||
// +---+ +---+ | ||
// | ||
// And here is the mapping from a node to the set of nodes that are | ||
// reachable from it within the test graph: | ||
// | ||
// 1: {3,4,5,6,7,8} | ||
// 2: {2} | ||
// 3: {3,4,5,6,7,8} | ||
// 4: {3,4,5,6,7,8} | ||
// 5: {3,4,5,6,7,8} | ||
// 6: {8} | ||
// 7: {3,4,5,6,7,8} | ||
// 8: {} | ||
|
||
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)] | ||
struct Node(usize); | ||
|
||
#[derive(Clone, Debug, Default, PartialEq, Eq)] | ||
struct Graph(HashMap<Node, Vec<Node>>); | ||
|
||
impl Graph { | ||
fn make_test_graph() -> Graph { | ||
let mut g = Graph::default(); | ||
g.0.insert(Node(1), vec![Node(3)]); | ||
g.0.insert(Node(2), vec![Node(2)]); | ||
g.0.insert(Node(3), vec![Node(4), Node(5)]); | ||
g.0.insert(Node(4), vec![Node(7)]); | ||
g.0.insert(Node(5), vec![Node(6), Node(7)]); | ||
g.0.insert(Node(6), vec![Node(8)]); | ||
g.0.insert(Node(7), vec![Node(3)]); | ||
g.0.insert(Node(8), vec![]); | ||
g | ||
} | ||
|
||
fn reverse(&self) -> Graph { | ||
let mut reversed = Graph::default(); | ||
for (node, edges) in self.0.iter() { | ||
reversed.0.entry(*node).or_insert(vec![]); | ||
for referent in edges.iter() { | ||
reversed.0.entry(*referent).or_insert(vec![]).push(*node); | ||
} | ||
} | ||
reversed | ||
} | ||
} | ||
|
||
#[derive(Clone, Debug, PartialEq, Eq)] | ||
struct ReachableFrom<'a> { | ||
reachable: HashMap<Node, HashSet<Node>>, | ||
graph: &'a Graph, | ||
reversed: Graph, | ||
} | ||
|
||
impl<'a> MonotoneFramework for ReachableFrom<'a> { | ||
type Node = Node; | ||
type Extra = &'a Graph; | ||
type Output = HashMap<Node, HashSet<Node>>; | ||
|
||
fn new(graph: &'a Graph) -> ReachableFrom { | ||
let reversed = graph.reverse(); | ||
ReachableFrom { | ||
reachable: Default::default(), | ||
graph: graph, | ||
reversed: reversed, | ||
} | ||
} | ||
|
||
fn initial_worklist(&self) -> Vec<Node> { | ||
self.graph.0.keys().cloned().collect() | ||
} | ||
|
||
fn constrain(&mut self, node: Node) -> bool { | ||
// The set of nodes reachable from a node `x` is | ||
// | ||
// reachable(x) = s_0 U s_1 U ... U reachable(s_0) U reachable(s_1) U ... | ||
// | ||
// where there exist edges from `x` to each of `s_0, s_1, ...`. | ||
// | ||
// Yes, what follows is a **terribly** inefficient set union | ||
// implementation. Don't copy this code outside of this test! | ||
|
||
let original_size = | ||
self.reachable.entry(node).or_insert(HashSet::new()).len(); | ||
|
||
for sub_node in self.graph.0[&node].iter() { | ||
self.reachable.get_mut(&node).unwrap().insert(*sub_node); | ||
|
||
let sub_reachable = self.reachable | ||
.entry(*sub_node) | ||
.or_insert(HashSet::new()) | ||
.clone(); | ||
|
||
for transitive in sub_reachable { | ||
self.reachable.get_mut(&node).unwrap().insert(transitive); | ||
} | ||
} | ||
|
||
let new_size = self.reachable[&node].len(); | ||
original_size != new_size | ||
} | ||
|
||
fn each_depending_on<F>(&self, node: Node, mut f: F) | ||
where F: FnMut(Node), | ||
{ | ||
for dep in self.reversed.0[&node].iter() { | ||
f(*dep); | ||
} | ||
} | ||
} | ||
|
||
impl<'a> From<ReachableFrom<'a>> for HashMap<Node, HashSet<Node>> { | ||
fn from(reachable: ReachableFrom<'a>) -> Self { | ||
reachable.reachable | ||
} | ||
} | ||
|
||
#[test] | ||
fn monotone() { | ||
let g = Graph::make_test_graph(); | ||
let reachable = analyze::<ReachableFrom>(&g); | ||
println!("reachable = {:#?}", reachable); | ||
|
||
fn nodes<A>(nodes: A) -> HashSet<Node> | ||
where A: AsRef<[usize]>, | ||
{ | ||
nodes.as_ref().iter().cloned().map(Node).collect() | ||
} | ||
|
||
let mut expected = HashMap::new(); | ||
expected.insert(Node(1), nodes([3, 4, 5, 6, 7, 8])); | ||
expected.insert(Node(2), nodes([2])); | ||
expected.insert(Node(3), nodes([3, 4, 5, 6, 7, 8])); | ||
expected.insert(Node(4), nodes([3, 4, 5, 6, 7, 8])); | ||
expected.insert(Node(5), nodes([3, 4, 5, 6, 7, 8])); | ||
expected.insert(Node(6), nodes([8])); | ||
expected.insert(Node(7), nodes([3, 4, 5, 6, 7, 8])); | ||
expected.insert(Node(8), nodes([])); | ||
println!("expected = {:#?}", expected); | ||
|
||
assert_eq!(reachable, expected); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -4,6 +4,7 @@ | |
//! the IR. | ||
pub mod annotations; | ||
pub mod analysis; | ||
pub mod comp; | ||
pub mod context; | ||
pub mod derive; | ||
|
Oops, something went wrong.