forked from NVIDIA/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TTS] Add STFT and SI-SDR loss to audio codec recipe (NVIDIA#7468)
* [TTS] Add STFT and SI-SDR loss to audio codec recipe Signed-off-by: Ryan <[email protected]> * [TTS] Fix STFT resolution Signed-off-by: Ryan <[email protected]> * [TTS] Fix training metric logging Signed-off-by: Ryan <[email protected]> * [TTS] Add docstring to mel and stft losses Signed-off-by: Ryan <[email protected]> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Signed-off-by: Ryan <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
40d480c
commit 10052b7
Showing
8 changed files
with
508 additions
and
93 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# This config contains the default values for training 24khz audio codec model | ||
# If you want to train model on other dataset, you can change config values according to your dataset. | ||
# Most dataset-specific arguments are in the head of the config file, see below. | ||
|
||
name: EnCodec | ||
|
||
max_epochs: ??? | ||
# Adjust batch size based on GPU memory | ||
batch_size: 16 | ||
# When doing weighted sampling with multiple manifests, this defines how many training steps are in an epoch. | ||
# If null, then weighted sampling is disabled. | ||
weighted_sampling_steps_per_epoch: null | ||
|
||
# Dataset metadata for each manifest | ||
# https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/tts/data/vocoder_dataset.py#L39-L41 | ||
train_ds_meta: ??? | ||
val_ds_meta: ??? | ||
|
||
log_ds_meta: ??? | ||
log_dir: ??? | ||
|
||
# Modify these values based on your sample rate | ||
sample_rate: 24000 | ||
train_n_samples: 24000 | ||
down_sample_rates: [2, 4, 5, 8] | ||
up_sample_rates: [8, 5, 4, 2] | ||
# The number of samples per encoded audio frame. Should be the product of the down_sample_rates. | ||
# For example 2 * 4 * 5 * 8 = 320. | ||
samples_per_frame: 320 | ||
|
||
model: | ||
|
||
max_epochs: ${max_epochs} | ||
steps_per_epoch: ${weighted_sampling_steps_per_epoch} | ||
|
||
sample_rate: ${sample_rate} | ||
samples_per_frame: ${samples_per_frame} | ||
|
||
mel_loss_l1_scale: 15.0 | ||
mel_loss_l2_scale: 0.0 | ||
stft_loss_scale: 15.0 | ||
time_domain_loss_scale: 0.0 | ||
|
||
# Probability of updating the discriminator during each training step | ||
# For example, update the discriminator 2/3 times (2 updates for every 3 batches) | ||
disc_updates_per_period: 2 | ||
disc_update_period: 3 | ||
|
||
# All resolutions for reconstruction loss, ordered [num_fft, hop_length, window_length] | ||
loss_resolutions: [ | ||
[32, 8, 32], [64, 16, 64], [128, 32, 128], [256, 64, 256], [512, 128, 512], [1024, 256, 1024], [2048, 512, 2048] | ||
] | ||
mel_loss_dims: [5, 10, 20, 40, 80, 160, 320] | ||
mel_loss_log_guard: 1.0 | ||
stft_loss_log_guard: 1.0 | ||
|
||
train_ds: | ||
dataset: | ||
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset | ||
weighted_sampling_steps_per_epoch: ${weighted_sampling_steps_per_epoch} | ||
sample_rate: ${sample_rate} | ||
n_samples: ${train_n_samples} | ||
min_duration: 1.01 | ||
max_duration: null | ||
dataset_meta: ${train_ds_meta} | ||
|
||
dataloader_params: | ||
batch_size: ${batch_size} | ||
drop_last: true | ||
num_workers: 4 | ||
|
||
validation_ds: | ||
dataset: | ||
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset | ||
sample_rate: ${sample_rate} | ||
n_samples: null | ||
min_duration: null | ||
max_duration: null | ||
trunc_duration: 10.0 # Only use the first 10 seconds of audio for computing validation loss | ||
dataset_meta: ${val_ds_meta} | ||
|
||
dataloader_params: | ||
batch_size: 8 | ||
num_workers: 2 | ||
|
||
# Configures how audio samples are generated and saved during training. | ||
# Remove this section to disable logging. | ||
log_config: | ||
log_dir: ${log_dir} | ||
log_epochs: [10, 50] | ||
epoch_frequency: 100 | ||
log_tensorboard: false | ||
log_wandb: false | ||
|
||
generators: | ||
- _target_: nemo.collections.tts.parts.utils.callbacks.AudioCodecArtifactGenerator | ||
log_audio: true | ||
log_encoding: true | ||
log_dequantized: true | ||
|
||
dataset: | ||
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset | ||
sample_rate: ${sample_rate} | ||
n_samples: null | ||
min_duration: null | ||
max_duration: null | ||
trunc_duration: 15.0 # Only log the first 15 seconds of generated audio. | ||
dataset_meta: ${log_ds_meta} | ||
|
||
dataloader_params: | ||
batch_size: 4 | ||
num_workers: 2 | ||
|
||
audio_encoder: | ||
_target_: nemo.collections.tts.modules.encodec_modules.HifiGanEncoder | ||
down_sample_rates: ${down_sample_rates} | ||
|
||
audio_decoder: | ||
_target_: nemo.collections.tts.modules.encodec_modules.SEANetDecoder | ||
up_sample_rates: ${up_sample_rates} | ||
|
||
vector_quantizer: | ||
_target_: nemo.collections.tts.modules.encodec_modules.ResidualVectorQuantizer | ||
num_codebooks: 8 | ||
|
||
discriminator: | ||
_target_: nemo.collections.tts.modules.encodec_modules.MultiResolutionDiscriminatorSTFT | ||
resolutions: [[128, 32, 128], [256, 64, 256], [512, 128, 512], [1024, 256, 1024], [2048, 512, 2048]] | ||
|
||
# The original EnCodec uses hinged loss, but squared-GAN loss is more stable | ||
# and reduces the need to tune the loss weights or use a gradient balancer. | ||
generator_loss: | ||
_target_: nemo.collections.tts.losses.audio_codec_loss.GeneratorSquaredLoss | ||
|
||
discriminator_loss: | ||
_target_: nemo.collections.tts.losses.audio_codec_loss.DiscriminatorSquaredLoss | ||
|
||
optim: | ||
_target_: torch.optim.Adam | ||
lr: 3e-4 | ||
betas: [0.5, 0.9] | ||
|
||
sched: | ||
name: ExponentialLR | ||
gamma: 0.998 | ||
|
||
trainer: | ||
num_nodes: 1 | ||
devices: 1 | ||
accelerator: gpu | ||
strategy: ddp_find_unused_parameters_true | ||
precision: 32 # Vector quantization only works with 32-bit precision. | ||
max_epochs: ${max_epochs} | ||
accumulate_grad_batches: 1 | ||
enable_checkpointing: False # Provided by exp_manager | ||
logger: false # Provided by exp_manager | ||
log_every_n_steps: 100 | ||
check_val_every_n_epoch: 10 | ||
benchmark: false | ||
|
||
exp_manager: | ||
exp_dir: null | ||
name: ${name} | ||
create_tensorboard_logger: true | ||
create_checkpoint_callback: true | ||
create_wandb_logger: false | ||
checkpoint_callback_params: | ||
monitor: val_loss | ||
resume_if_exists: false | ||
resume_ignore_no_checkpoint: false |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.