forked from ageron/handson-ml2
-
Notifications
You must be signed in to change notification settings - Fork 558
/
requirements.txt
93 lines (67 loc) · 2.47 KB
/
requirements.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# WARNING: Using Anaconda instead of pip is highly recommended, especially on
# Windows or when using a GPU. Please see the installation instructions in
# INSTALL.md
##### Core scientific packages
jupyter~=1.0.0
matplotlib~=3.4.3
numpy~=1.19.5
pandas~=1.3.3
scipy~=1.7.1
##### Machine Learning packages
scikit-learn~=1.0
# Optional: the XGBoost library is only used in chapter 7
xgboost~=1.4.2
# Optional: the transformers library is only using in chapter 16
transformers~=4.11.3
##### TensorFlow-related packages
# If you have a TF-compatible GPU and you want to enable GPU support, then
# replace tensorflow-serving-api with tensorflow-serving-api-gpu.
# Your GPU must have CUDA Compute Capability 3.5 or higher support, and
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
# installation instructions.
tensorflow~=2.6.0
# Optional: the TF Serving API library is just needed for chapter 19.
tensorflow-serving-api~=2.6.0 # or tensorflow-serving-api-gpu if gpu
tensorboard~=2.7.0
tensorboard-plugin-profile~=2.5.0
tensorflow-datasets~=4.4.0
tensorflow-hub~=0.12.0
tensorflow-probability~=0.14.1
# Optional: only used in chapter 13.
tfx~=1.3.0
# Optional: only used in chapter 16.
tensorflow-addons~=0.14.0
##### Reinforcement Learning library (chapter 18)
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
gym[Box2D,atari,accept-rom-license]~=0.21.0
# WARNING: on Windows, installing Box2D this way requires:
# * Swig: http://www.swig.org/download.html
# * Microsoft C++ Build Tools: https://visualstudio.microsoft.com/visual-cpp-build-tools/
# It's much easier to use Anaconda instead.
tf-agents~=0.10.0
##### Image manipulation
Pillow~=8.4.0
graphviz~=0.17
opencv-python~=4.5.3.56
pyglet~=1.5.21
#pyvirtualdisplay # needed in chapter 18, if on a headless server
# (i.e., without screen, e.g., Colab or VM)
##### Additional utilities
# Efficient jobs (caching, parallelism, persistence)
joblib~=0.14.1
# Easy http requests
requests~=2.26.0
# Nice utility to diff Jupyter Notebooks.
nbdime~=3.1.0
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
# tutorial).
numexpr~=2.7.3
# Optional: these libraries can be useful in the chapter 3, exercise 4.
nltk~=3.6.5
urlextract~=1.4.0
# Optional: these libraries are only used in chapter 16
ftfy~=6.0.3
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support
tqdm~=4.62.3
ipywidgets~=7.6.5