Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Tensor::from_image_file and Tensor::from_image_bytes #2097

Merged
merged 6 commits into from
May 12, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
81 changes: 78 additions & 3 deletions crates/re_log_types/src/component_types/tensor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -776,6 +776,13 @@ pub enum TensorImageLoadError {
expected: Vec<TensorDimension>,
found: Vec<TensorDimension>,
},

#[cfg(not(target_arch = "wasm32"))]
#[error("Unsupported file extension '{extension}' for file {path:?}")]
UnknownExtension {
extension: String,
path: std::path::PathBuf,
},
}

#[cfg(feature = "image")]
Expand Down Expand Up @@ -828,21 +835,81 @@ impl Tensor {

#[cfg(feature = "image")]
impl Tensor {
#[cfg(not(target_arch = "wasm32"))]
emilk marked this conversation as resolved.
Show resolved Hide resolved
/// Construct a tensor from the contents of an image file on disk.
///
/// JPEGs will be kept encoded, left to the viewer to decode on-the-fly.
/// Other images types will be decoded directly.
///
/// Requires the `image` feature.
#[cfg(not(target_arch = "wasm32"))]
pub fn from_image_file(path: &std::path::Path) -> Result<Self, TensorImageLoadError> {
crate::profile_function!(path.to_string_lossy());

let img_bytes = {
crate::profile_scope!("fs::read");
std::fs::read(path)?
};

let img_format = if let Some(extension) = path.extension() {
image::ImageFormat::from_extension(extension).ok_or_else(|| {
TensorImageLoadError::UnknownExtension {
emilk marked this conversation as resolved.
Show resolved Hide resolved
extension: extension.to_string_lossy().to_string(),
path: path.to_owned(),
}
})?
} else {
image::guess_format(&img_bytes)?
};

Self::from_image_bytes(img_bytes, img_format)
}

/// Construct a tensor from the contents of a JPEG file on disk.
///
/// Requires the `image` feature.
#[cfg(not(target_arch = "wasm32"))]
pub fn from_jpeg_file(path: &std::path::Path) -> Result<Self, TensorImageLoadError> {
crate::profile_function!(path.to_string_lossy());
let jpeg_bytes = {
crate::profile_scope!("fs::read");
std::fs::read(path)?
};
Self::from_jpeg_bytes(jpeg_bytes)
}

#[deprecated = "Renamed 'from_jpeg_file'"]
#[cfg(not(target_arch = "wasm32"))]
pub fn tensor_from_jpeg_file(
image_path: impl AsRef<std::path::Path>,
) -> Result<Self, TensorImageLoadError> {
let jpeg_bytes = std::fs::read(image_path)?;
Self::tensor_from_jpeg_bytes(jpeg_bytes)
Self::from_jpeg_file(image_path.as_ref())
}

/// Construct a tensor from the contents of an image file.
///
/// JPEGs will be kept encoded, left to the viewer to decode on-the-fly.
/// Other images types will be decoded directly.
///
/// Requires the `image` feature.
pub fn from_image_bytes(
bytes: Vec<u8>,
format: image::ImageFormat,
) -> Result<Self, TensorImageLoadError> {
crate::profile_function!(format!("{format:?}"));
if format == image::ImageFormat::Jpeg {
Self::from_jpeg_bytes(bytes)
} else {
let image = image::load_from_memory_with_format(&bytes, format)?;
Self::from_image(image)
}
}

/// Construct a tensor from the contents of a JPEG file.
///
/// Requires the `image` feature.
pub fn tensor_from_jpeg_bytes(jpeg_bytes: Vec<u8>) -> Result<Self, TensorImageLoadError> {
pub fn from_jpeg_bytes(jpeg_bytes: Vec<u8>) -> Result<Self, TensorImageLoadError> {
crate::profile_function!();
use image::ImageDecoder as _;
let jpeg = image::codecs::jpeg::JpegDecoder::new(std::io::Cursor::new(&jpeg_bytes))?;
if jpeg.color_type() != image::ColorType::Rgb8 {
Expand All @@ -866,6 +933,12 @@ impl Tensor {
})
}

#[deprecated = "Renamed 'from_jpeg_bytes'"]
#[cfg(not(target_arch = "wasm32"))]
pub fn tensor_from_jpeg_bytes(jpeg_bytes: Vec<u8>) -> Result<Self, TensorImageLoadError> {
Self::from_jpeg_bytes(jpeg_bytes)
}

/// Construct a tensor from something that can be turned into a [`image::DynamicImage`].
///
/// Requires the `image` feature.
Expand Down Expand Up @@ -1059,6 +1132,8 @@ impl DecodedTensor {
pub fn from_dynamic_image(
image: image::DynamicImage,
) -> Result<DecodedTensor, TensorImageLoadError> {
crate::profile_function!();

let (w, h) = (image.width(), image.height());

let (depth, data) = match image {
Expand Down
2 changes: 1 addition & 1 deletion examples/rust/objectron/src/main.rs
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ fn log_baseline_objects(

fn log_video_frame(rec_stream: &RecordingStream, ar_frame: &ArFrame) -> anyhow::Result<()> {
let image_path = ar_frame.dir.join(format!("video/{}.jpg", ar_frame.index));
let tensor = rerun::components::Tensor::tensor_from_jpeg_file(image_path)?;
let tensor = rerun::components::Tensor::from_jpeg_file(&image_path)?;

MsgSender::new("world/camera/video")
.with_timepoint(ar_frame.timepoint.clone())
Expand Down
13 changes: 10 additions & 3 deletions rerun_py/rerun_sdk/rerun/log/file.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,9 @@ class ImageFormat(Enum):
JPEG = "jpeg"
"""JPEG format."""

PNG = "png"
"""PNG format."""


@log_decorator
def log_mesh_file(
Expand Down Expand Up @@ -100,11 +103,15 @@ def log_image_file(
"""
Log an image file given its contents or path on disk.

Only JPEGs are supported right now.

You must pass either `img_bytes` or `img_path`.

If no `img_format` is specified, we will try and guess it.
Only JPEGs and PNGs are supported right now.

JPEGs will be stored compressed, saving memory,
whilst PNGs will currently be decoded before they are logged.
This may change in the future.

If no `img_format` is specified, rerun will try to guess it.

Parameters
----------
Expand Down
41 changes: 3 additions & 38 deletions rerun_py/src/python_bridge.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
#![allow(clippy::borrow_deref_ref)] // False positive due to #[pufunction] macro
#![allow(unsafe_op_in_unsafe_fn)] // False positive due to #[pufunction] macro

use std::{borrow::Cow, io::Cursor, path::PathBuf};
use std::{borrow::Cow, path::PathBuf};

use itertools::izip;
use pyo3::{
Expand Down Expand Up @@ -987,46 +987,11 @@ fn log_image_file(
}
};

use image::ImageDecoder as _;
let (w, h) = match img_format {
image::ImageFormat::Jpeg => {
use image::codecs::jpeg::JpegDecoder;
let jpeg = JpegDecoder::new(Cursor::new(&img_bytes))
.map_err(|err| PyTypeError::new_err(err.to_string()))?;

let color_format = jpeg.color_type();
if !matches!(color_format, image::ColorType::Rgb8) {
// TODO(emilk): support gray-scale jpeg aswell
return Err(PyTypeError::new_err(format!(
"Unsupported color format {color_format:?}. \
Expected one of: RGB8"
)));
}

jpeg.dimensions()
}
_ => {
return Err(PyTypeError::new_err(format!(
"Unsupported image format {img_format:?}. \
Expected one of: JPEG"
)))
}
};
let tensor = Tensor::from_image_bytes(img_bytes, img_format)
.map_err(|err| PyTypeError::new_err(err.to_string()))?;

let time_point = time(timeless, data_stream);

let tensor = re_log_types::component_types::Tensor {
tensor_id: TensorId::random(),
shape: vec![
TensorDimension::height(h as _),
TensorDimension::width(w as _),
TensorDimension::depth(3),
],
data: re_log_types::component_types::TensorData::JPEG(img_bytes.into()),
meaning: re_log_types::component_types::TensorDataMeaning::Unknown,
meter: None,
};

let row = DataRow::from_cells1(
RowId::random(),
entity_path,
Expand Down