Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New example code for facebook research segment anything #1788

Merged
merged 8 commits into from
Apr 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion crates/re_viewer/src/ui/data_ui/image.rs
Original file line number Diff line number Diff line change
Expand Up @@ -366,7 +366,7 @@ pub fn show_zoomed_image_region(
.class_description(Some(ClassId(u16_val)))
.annotation_info()
.label(None)
.unwrap_or_default(),
.unwrap_or_else(|| u16_val.to_string())
);
ui.end_row();
};
Expand Down
1 change: 1 addition & 0 deletions examples/python/segment_anything/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
model/
210 changes: 210 additions & 0 deletions examples/python/segment_anything/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
#!/usr/bin/env python3
"""
Example of using Rerun to log and visualize the output of segment-anything.

See: [segment_anything](https://segment-anything.com/).

Can be used to test mask-generation on one or more images. Images can be local file-paths
or remote urls.

Exa:
```
# Run on a remote image:
python main.py https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/dog.jpg

# Use cuda and a different model on a local image
python main.py --device cuda --model vit_h /path/to/my_image.jpg
```
"""


import argparse
import logging
import os
from pathlib import Path
from typing import Final
from urllib.parse import urlparse

import cv2
import numpy as np
import requests
import rerun as rr
import torch
import torchvision
from cv2 import Mat
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
from segment_anything.modeling import Sam
from tqdm import tqdm

MODEL_DIR: Final = Path(os.path.dirname(__file__)) / "model"
MODEL_URLS: Final = {
"vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
"vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
"vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
}


def download_with_progress(url: str, dest: Path) -> None:
"""Download file with tqdm progress bar."""
chunk_size = 1024 * 1024
resp = requests.get(url, stream=True)
total_size = int(resp.headers.get("content-length", 0))
with open(dest, "wb") as dest_file:
with tqdm(
desc="Downloading model", total=total_size, unit="iB", unit_scale=True, unit_divisor=1024
) as progress:
for data in resp.iter_content(chunk_size):
dest_file.write(data)
progress.update(len(data))


def get_downloaded_model_path(model_name: str) -> Path:
"""Fetch the segment-anything model to a local cache directory."""
model_url = MODEL_URLS[model_name]

model_location = MODEL_DIR / model_url.split("/")[-1]
if not model_location.exists():
os.makedirs(MODEL_DIR, exist_ok=True)
download_with_progress(model_url, model_location)

return model_location


def create_sam(model: str, device: str) -> Sam:
"""Load the segment-anything model, fetching the model-file as necessary."""
model_path = get_downloaded_model_path(model)

logging.info("PyTorch version: {}".format(torch.__version__))
logging.info("Torchvision version: {}".format(torchvision.__version__))
logging.info("CUDA is available: {}".format(torch.cuda.is_available()))

logging.info("Building sam from: {}".format(model_path))
sam = sam_model_registry[model](checkpoint=model_path)
return sam.to(device=device)


def run_segmentation(mask_generator: SamAutomaticMaskGenerator, image: Mat) -> None:
"""Run segmentation on a single image."""
rr.log_image("image", image)

logging.info("Finding masks")
masks = mask_generator.generate(image)

logging.info("Found {} masks".format(len(masks)))

# Log all the masks stacked together as a tensor
# TODO(jleibs): Tensors with class-ids and annotation-coloring would make this much slicker
mask_tensor = (
np.dstack([np.zeros((image.shape[0], image.shape[1]))] + [m["segmentation"] for m in masks]).astype("uint8")
* 128
)
rr.log_tensor("mask_tensor", mask_tensor)

# Note: for stacking, it is important to sort these masks by area from largest to smallest
# this is because the masks are overlapping and we want smaller masks to
# be drawn on top of larger masks.
# TODO(jleibs): we could instead draw each mask as a separate image layer, but the current layer-stacking
# does not produce great results.
masks_with_ids = list(enumerate(masks, start=1))
masks_with_ids.sort(key=(lambda x: x[1]["area"]), reverse=True) # type: ignore[no-any-return]

# Work-around for https://github.com/rerun-io/rerun/issues/1782
# Make sure we have an AnnotationInfo present for every class-id used in this image
# TODO(jleibs): Remove when fix is released
rr.log_annotation_context(
"image",
[rr.AnnotationInfo(id) for id, _ in masks_with_ids],
timeless=False,
)

# Layer all of the masks together, using the id as class-id in the segmentation
segmentation_img = np.zeros((image.shape[0], image.shape[1]))
for id, m in masks_with_ids:
segmentation_img[m["segmentation"]] = id

rr.log_segmentation_image("image/masks", segmentation_img)

mask_bbox = np.array([m["bbox"] for _, m in masks_with_ids])
rr.log_rects("image/boxes", rects=mask_bbox, class_ids=[id for id, _ in masks_with_ids])


def is_url(path: str) -> bool:
"""Check if a path is a url or a local file."""
try:
result = urlparse(path)
return all([result.scheme, result.netloc])
except ValueError:
return False


def load_image(image_uri: str) -> Mat:
"""Conditionally download an image from URL or load it from disk."""
logging.info("Loading: {}".format(image_uri))
if is_url(image_uri):
response = requests.get(image_uri)
response.raise_for_status()
image_data = np.asarray(bytearray(response.content), dtype="uint8")
image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
else:
image = cv2.imread(image_uri, cv2.IMREAD_COLOR)

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image


def main() -> None:
parser = argparse.ArgumentParser(
description="Run the Facebook Research Segment Anything example.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--model",
action="store",
default="vit_b",
choices=MODEL_URLS.keys(),
help="Which model to use." "(See: https://github.com/facebookresearch/segment-anything#model-checkpoints)",
)
parser.add_argument(
"--device",
action="store",
default="cpu",
help="Which torch device to use, e.g. cpu or cuda. "
"(See: https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)",
)
parser.add_argument(
"--points-per-batch",
action="store",
default=32,
type=int,
help="Points per batch. More points will run faster, but too many will exhaust GPU memory.",
)
parser.add_argument("images", metavar="N", type=str, nargs="*", help="A list of images to process.")

rr.script_add_args(parser)
args = parser.parse_args()

rr.script_setup(args, "segment_anything")
logging.getLogger().addHandler(rr.LoggingHandler("logs"))
logging.getLogger().setLevel(logging.INFO)

sam = create_sam(args.model, args.device)

mask_config = {"points_per_batch": args.points_per_batch}
mask_generator = SamAutomaticMaskGenerator(sam, **mask_config)

if len(args.images) == 0:
logging.info("No image provided. Using default.")
args.images = [
"https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg"
]

for n, image_uri in enumerate(args.images):
rr.set_time_sequence("image", n)
image = load_image(image_uri)
run_segmentation(mask_generator, image)

rr.script_teardown(args)


if __name__ == "__main__":
main()
8 changes: 8 additions & 0 deletions examples/python/segment_anything/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
-e git+https://github.com/facebookresearch/segment-anything.git#egg=segment-anything
numpy
opencv-python
requests
rerun-sdk
torch
torchvision
tqdm