Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Faster stable diffusion #1364

Merged
merged 3 commits into from
Feb 21, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 20 additions & 34 deletions examples/python/stable_diffusion/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,35 +32,6 @@
IMAGE_NAMES: Final = list(IMAGE_NAME_TO_URL.keys())


def run_stable_diffusion(
image_path: str, prompt: str, n_prompt: str, strength: float, guidance_scale: float, num_inference_steps: int
) -> None:

pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", local_files_only=False, cache_dir=CACHE_DIR.absolute()
)

if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
pipe = pipe.to("mps")
elif torch.cuda.is_available():
pipe = pipe.to("cuda")
else:
pipe = pipe.to("cpu")

pipe.enable_attention_slicing()

image = Image.open(image_path)

pipe(
prompt=prompt,
strength=strength,
guidance_scale=11,
negative_prompt=n_prompt,
num_inference_steps=70,
image=image,
)


def get_downloaded_path(dataset_dir: Path, image_name: str) -> str:
image_url = IMAGE_NAME_TO_URL[image_name]
image_file_name = image_url.split("/")[-1]
Expand Down Expand Up @@ -118,7 +89,7 @@ def main() -> None:
parser.add_argument(
"--guidance_scale",
type=float,
default=8,
default=11,
help="""
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Expand All @@ -130,7 +101,7 @@ def main() -> None:
parser.add_argument(
"--num_inference_steps",
type=int,
default=50,
default=10,
help="""
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter will be modulated by `strength`.
Expand All @@ -146,13 +117,28 @@ def main() -> None:
if not image_path:
image_path = get_downloaded_path(args.dataset_dir, args.image)

run_stable_diffusion(
image_path=image_path,
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", local_files_only=False, cache_dir=CACHE_DIR.absolute()
)

if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
pipe = pipe.to("mps")
elif torch.cuda.is_available():
pipe = pipe.to("cuda")
else:
pipe = pipe.to("cpu")

pipe.enable_attention_slicing()

image = Image.open(image_path)

pipe(
prompt=args.prompt,
n_prompt=args.n_prompt,
strength=args.strength,
guidance_scale=args.guidance_scale,
negative_prompt=args.n_prompt,
num_inference_steps=args.num_inference_steps,
image=image,
)

rr.script_teardown(args)
Expand Down