Skip to content

Commit

Permalink
Add Tensor::from_image_file and Tensor::from_image_bytes (#2097)
Browse files Browse the repository at this point in the history
* Add Tensor::from_image_file and Tensor::from_image_bytes

* Support PNG in log_image_file

* remove duplicated cfg

Co-authored-by: Andreas Reich <[email protected]>

* Guess format even if extension is unknown

* Always turn on the "image" feature of re_log_types

* Python SDK: always support PNG images

---------

Co-authored-by: Andreas Reich <[email protected]>
  • Loading branch information
emilk and Wumpf authored May 12, 2023
1 parent 51e703f commit e4bdad8
Show file tree
Hide file tree
Showing 5 changed files with 95 additions and 47 deletions.
79 changes: 76 additions & 3 deletions crates/re_log_types/src/component_types/tensor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -776,6 +776,13 @@ pub enum TensorImageLoadError {
expected: Vec<TensorDimension>,
found: Vec<TensorDimension>,
},

#[cfg(not(target_arch = "wasm32"))]
#[error("Unsupported file extension '{extension}' for file {path:?}")]
UnknownExtension {
extension: String,
path: std::path::PathBuf,
},
}

#[cfg(feature = "image")]
Expand Down Expand Up @@ -828,21 +835,79 @@ impl Tensor {

#[cfg(feature = "image")]
impl Tensor {
/// Construct a tensor from the contents of an image file on disk.
///
/// JPEGs will be kept encoded, left to the viewer to decode on-the-fly.
/// Other images types will be decoded directly.
///
/// Requires the `image` feature.
#[cfg(not(target_arch = "wasm32"))]
pub fn from_image_file(path: &std::path::Path) -> Result<Self, TensorImageLoadError> {
crate::profile_function!(path.to_string_lossy());

let img_bytes = {
crate::profile_scope!("fs::read");
std::fs::read(path)?
};

let img_format = if let Some(extension) = path.extension() {
if let Some(format) = image::ImageFormat::from_extension(extension) {
format
} else {
image::guess_format(&img_bytes)?
}
} else {
image::guess_format(&img_bytes)?
};

Self::from_image_bytes(img_bytes, img_format)
}

/// Construct a tensor from the contents of a JPEG file on disk.
///
/// Requires the `image` feature.
#[cfg(not(target_arch = "wasm32"))]
pub fn from_jpeg_file(path: &std::path::Path) -> Result<Self, TensorImageLoadError> {
crate::profile_function!(path.to_string_lossy());
let jpeg_bytes = {
crate::profile_scope!("fs::read");
std::fs::read(path)?
};
Self::from_jpeg_bytes(jpeg_bytes)
}

#[deprecated = "Renamed 'from_jpeg_file'"]
#[cfg(not(target_arch = "wasm32"))]
pub fn tensor_from_jpeg_file(
image_path: impl AsRef<std::path::Path>,
) -> Result<Self, TensorImageLoadError> {
let jpeg_bytes = std::fs::read(image_path)?;
Self::tensor_from_jpeg_bytes(jpeg_bytes)
Self::from_jpeg_file(image_path.as_ref())
}

/// Construct a tensor from the contents of an image file.
///
/// JPEGs will be kept encoded, left to the viewer to decode on-the-fly.
/// Other images types will be decoded directly.
///
/// Requires the `image` feature.
pub fn from_image_bytes(
bytes: Vec<u8>,
format: image::ImageFormat,
) -> Result<Self, TensorImageLoadError> {
crate::profile_function!(format!("{format:?}"));
if format == image::ImageFormat::Jpeg {
Self::from_jpeg_bytes(bytes)
} else {
let image = image::load_from_memory_with_format(&bytes, format)?;
Self::from_image(image)
}
}

/// Construct a tensor from the contents of a JPEG file.
///
/// Requires the `image` feature.
pub fn tensor_from_jpeg_bytes(jpeg_bytes: Vec<u8>) -> Result<Self, TensorImageLoadError> {
pub fn from_jpeg_bytes(jpeg_bytes: Vec<u8>) -> Result<Self, TensorImageLoadError> {
crate::profile_function!();
use image::ImageDecoder as _;
let jpeg = image::codecs::jpeg::JpegDecoder::new(std::io::Cursor::new(&jpeg_bytes))?;
if jpeg.color_type() != image::ColorType::Rgb8 {
Expand All @@ -866,6 +931,12 @@ impl Tensor {
})
}

#[deprecated = "Renamed 'from_jpeg_bytes'"]
#[cfg(not(target_arch = "wasm32"))]
pub fn tensor_from_jpeg_bytes(jpeg_bytes: Vec<u8>) -> Result<Self, TensorImageLoadError> {
Self::from_jpeg_bytes(jpeg_bytes)
}

/// Construct a tensor from something that can be turned into a [`image::DynamicImage`].
///
/// Requires the `image` feature.
Expand Down Expand Up @@ -1059,6 +1130,8 @@ impl DecodedTensor {
pub fn from_dynamic_image(
image: image::DynamicImage,
) -> Result<DecodedTensor, TensorImageLoadError> {
crate::profile_function!();

let (w, h) = (image.width(), image.height());

let (depth, data) = match image {
Expand Down
2 changes: 1 addition & 1 deletion examples/rust/objectron/src/main.rs
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ fn log_baseline_objects(

fn log_video_frame(rec_stream: &RecordingStream, ar_frame: &ArFrame) -> anyhow::Result<()> {
let image_path = ar_frame.dir.join(format!("video/{}.jpg", ar_frame.index));
let tensor = rerun::components::Tensor::tensor_from_jpeg_file(image_path)?;
let tensor = rerun::components::Tensor::from_jpeg_file(&image_path)?;

MsgSender::new("world/camera/video")
.with_timepoint(ar_frame.timepoint.clone())
Expand Down
7 changes: 5 additions & 2 deletions rerun_py/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ web_viewer = ["rerun/web_viewer", "dep:re_web_viewer_server", "dep:re_ws_comms"]
re_build_info.workspace = true
re_error.workspace = true
re_log.workspace = true
re_log_types = { workspace = true, features = ["glam"] }
re_log_types = { workspace = true, features = ["glam", "image"] }
re_memory.workspace = true
rerun = { workspace = true, features = ["analytics", "server", "sdk"] }
re_web_viewer_server = { workspace = true, optional = true }
Expand All @@ -51,7 +51,10 @@ re_ws_comms = { workspace = true, optional = true }
arrow2 = { workspace = true, features = ["io_ipc", "io_print"] }
document-features = "0.2"
glam.workspace = true
image = { workspace = true, default-features = false, features = ["jpeg"] }
image = { workspace = true, default-features = false, features = [
"jpeg",
"png",
] }
itertools = { workspace = true }
macaw.workspace = true
mimalloc = { workspace = true, features = ["local_dynamic_tls"] }
Expand Down
13 changes: 10 additions & 3 deletions rerun_py/rerun_sdk/rerun/log/file.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,9 @@ class ImageFormat(Enum):
JPEG = "jpeg"
"""JPEG format."""

PNG = "png"
"""PNG format."""


@log_decorator
def log_mesh_file(
Expand Down Expand Up @@ -112,11 +115,15 @@ def log_image_file(
"""
Log an image file given its contents or path on disk.
Only JPEGs are supported right now.
You must pass either `img_bytes` or `img_path`.
If no `img_format` is specified, we will try and guess it.
Only JPEGs and PNGs are supported right now.
JPEGs will be stored compressed, saving memory,
whilst PNGs will currently be decoded before they are logged.
This may change in the future.
If no `img_format` is specified, rerun will try to guess it.
Parameters
----------
Expand Down
41 changes: 3 additions & 38 deletions rerun_py/src/python_bridge.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
#![allow(clippy::borrow_deref_ref)] // False positive due to #[pufunction] macro
#![allow(unsafe_op_in_unsafe_fn)] // False positive due to #[pufunction] macro

use std::{borrow::Cow, io::Cursor, path::PathBuf};
use std::{borrow::Cow, path::PathBuf};

use itertools::izip;
use pyo3::{
Expand Down Expand Up @@ -1000,46 +1000,11 @@ fn log_image_file(
}
};

use image::ImageDecoder as _;
let (w, h) = match img_format {
image::ImageFormat::Jpeg => {
use image::codecs::jpeg::JpegDecoder;
let jpeg = JpegDecoder::new(Cursor::new(&img_bytes))
.map_err(|err| PyTypeError::new_err(err.to_string()))?;

let color_format = jpeg.color_type();
if !matches!(color_format, image::ColorType::Rgb8) {
// TODO(emilk): support gray-scale jpeg aswell
return Err(PyTypeError::new_err(format!(
"Unsupported color format {color_format:?}. \
Expected one of: RGB8"
)));
}

jpeg.dimensions()
}
_ => {
return Err(PyTypeError::new_err(format!(
"Unsupported image format {img_format:?}. \
Expected one of: JPEG"
)))
}
};
let tensor = Tensor::from_image_bytes(img_bytes, img_format)
.map_err(|err| PyTypeError::new_err(err.to_string()))?;

let time_point = time(timeless, data_stream);

let tensor = re_log_types::component_types::Tensor {
tensor_id: TensorId::random(),
shape: vec![
TensorDimension::height(h as _),
TensorDimension::width(w as _),
TensorDimension::depth(3),
],
data: re_log_types::component_types::TensorData::JPEG(img_bytes.into()),
meaning: re_log_types::component_types::TensorDataMeaning::Unknown,
meter: None,
};

let row = DataRow::from_cells1(
RowId::random(),
entity_path,
Expand Down

0 comments on commit e4bdad8

Please sign in to comment.