Skip to content

Commit

Permalink
Add example visualizing RRT* (#5214)
Browse files Browse the repository at this point in the history
### What

Adds an python example that visualizes the RRT* pathfinding algorithm.
There isn't a screenshot of the viewer in the `README.md` yet but it
will be added by linking to the image in this pull request.
I have tested the example in the native viewer in and the web viewer but
I'm not sure if that's what "[ ] I have tested the web demo" means.


![rrt-star-screenshot](https://github.com/rerun-io/rerun/assets/28707703/3bea9efc-4c82-4022-9260-cdec630d3005)

### Checklist
* [x] I have read and agree to [Contributor
Guide](https://github.com/rerun-io/rerun/blob/main/CONTRIBUTING.md) and
the [Code of
Conduct](https://github.com/rerun-io/rerun/blob/main/CODE_OF_CONDUCT.md)
* [x] I've included a screenshot or gif (if applicable)
* [x] I have tested the web demo (if applicable):
* [x] The PR title and labels are set such as to maximize their
usefulness for the next release's CHANGELOG

- [PR Build Summary](https://build.rerun.io/pr/5214)
- [Docs
preview](https://rerun.io/preview/48476971401c69710e7c0ffd1a45b97206d2ef9b/docs)
<!--DOCS-PREVIEW-->
- [Examples
preview](https://rerun.io/preview/48476971401c69710e7c0ffd1a45b97206d2ef9b/examples)
<!--EXAMPLES-PREVIEW-->
- [Recent benchmark results](https://build.rerun.io/graphs/crates.html)
- [Wasm size tracking](https://build.rerun.io/graphs/sizes.html)
  • Loading branch information
02alexander authored Feb 23, 2024
1 parent e7ed40f commit d7ef517
Show file tree
Hide file tree
Showing 6 changed files with 339 additions and 0 deletions.
2 changes: 2 additions & 0 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,11 @@
"emath",
"flatbuffers",
"framebuffer",
"Frazzoli",
"hoverable",
"ilog",
"jumpflooding",
"Karaman",
"Keypoint",
"memoffset",
"nyud",
Expand Down
2 changes: 2 additions & 0 deletions docs/cspell.json
Original file line number Diff line number Diff line change
Expand Up @@ -118,6 +118,7 @@
"flamegraphs",
"flatbuffers",
"fname",
"Frazzoli",
"frontmatter",
"gcloud",
"Georgios",
Expand Down Expand Up @@ -153,6 +154,7 @@
"Joao",
"jparismorgan",
"justfile",
"Karaman",
"keypoint",
"keypointid",
"keypoints",
Expand Down
1 change: 1 addition & 0 deletions examples/python/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
-r raw_mesh/requirements.txt
-r rgbd/requirements.txt
-r ros_node/requirements.txt
-r rrt-star/requirements.txt
-r segment_anything_model/requirements.txt
-r shared_recording/requirements.txt
-r signed_distance_fields/requirements.txt
Expand Down
26 changes: 26 additions & 0 deletions examples/python/rrt-star/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
<!--[metadata]
title = "RRT*"
tags = ["2D"]
description = "Visualization of the path finding algorithm RRT* in a simple environment."
thumbnail= "https://static.rerun.io/rrt-star/4d4684a24eab7d5def5768b7c1685d8b1cb2c010/full.png"
thumbnail_dimensions = [480, 360]
-->

<picture>
<img src="https://static.rerun.io/rrt-star/4d4684a24eab7d5def5768b7c1685d8b1cb2c010/full.png" alt="RRT* example screenshot">
<source media="(max-width: 480px)" srcset="https://static.rerun.io/rrt-star/4d4684a24eab7d5def5768b7c1685d8b1cb2c010/480w.png">
<source media="(max-width: 768px)" srcset="https://static.rerun.io/rrt-star/4d4684a24eab7d5def5768b7c1685d8b1cb2c010/768w.png">
<source media="(max-width: 1024px)" srcset="https://static.rerun.io/rrt-star/4d4684a24eab7d5def5768b7c1685d8b1cb2c010/1024w.png">
<source media="(max-width: 1200px)" srcset="https://static.rerun.io/rrt-star/4d4684a24eab7d5def5768b7c1685d8b1cb2c010/1200w.png">
</picture>

This example visualizes the path finding algorithm RRT\* in a simple environment.

A detailed explanation can be found in the original paper
Karaman, S. Frazzoli, S. 2011. "Sampling-based algorithms for optimal motion planning".
or in [this medium article](https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378)

```bash
pip install -r examples/python/rrt-star/requirements.txt
python examples/python/rrt-star/main.py
```
306 changes: 306 additions & 0 deletions examples/python/rrt-star/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@
#!/usr/bin/env python3
"""
Visualizes the path finding algorithm RRT* in a simple environment.
The algorithm finds a path between two points by randomly expanding a tree from the start point.
After it has added a random edge to the tree it looks at nearby nodes to check if it's faster to
reach them through this new edge instead, and if so it changes the parent of these nodes.
This ensures that the algorithm will converge to the optimal path given enough time.
A more detailed explanation can be found in the original paper
Karaman, S. Frazzoli, S. 2011. "Sampling-based algorithms for optimal motion planning".
or in the following medium article: https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378
Run:
```bash
pip install -r examples/python/rrt-star/requirements.txt
python examples/python/rrt-star/main.py
```
"""

from __future__ import annotations

import argparse
from typing import Annotated, Generator, Literal

import numpy as np
import numpy.typing as npt
import rerun as rr

Point2D = Annotated[npt.NDArray[np.float64], Literal[2]]


def distance(point0: Point2D, point1: Point2D) -> float:
return float(np.linalg.norm(point0 - point1, 2))


def segments_intersect(start0: Point2D, end0: Point2D, start1: Point2D, end1: Point2D) -> bool:
"""Checks if the segments (start0, end0) and (start1, end1) intersect."""
dir0 = end0 - start0
dir1 = end1 - start1
mat = np.stack([dir0, dir1], axis=1)
if abs(np.linalg.det(mat)) <= 0.00001: # They are close to perpendicular
return False
s, t = np.linalg.solve(mat, start1 - start0)
return (0 <= float(s) <= 1) and (0 <= -float(t) <= 1)


def steer(start: Point2D, end: Point2D, radius: float) -> Point2D:
"""Finds the point in a disc around `start` that is closest to `end`."""
dist = distance(start, end)
if dist < radius:
return end
else:
diff = end - start
direction = diff / np.linalg.norm(diff, 2)
return direction * radius + start


class Node:
parent: Node | None
pos: Point2D
cost: float
children: list[Node]

def __init__(self, parent: Node | None, position: Point2D, cost: float) -> None:
self.parent = parent
self.pos = position
self.cost = cost
self.children = []

def change_cost(self, delta_cost: float) -> None:
"""Modifies the cost of this node and all child nodes."""
self.cost += delta_cost
for child_node in self.children:
child_node.change_cost(delta_cost)


class RRTTree:
root: Node

def __init__(self, root_pos: Point2D) -> None:
self.root = Node(None, root_pos, 0)

def __iter__(self) -> Generator[Node, None, None]:
nxt = [self.root]
while len(nxt) >= 1:
cur = nxt.pop()
yield cur
for child in cur.children:
nxt.append(child)

def segments(self) -> list[tuple[Point2D, Point2D]]:
"""Returns all the edges of the tree."""
strips = []
for node in self:
if node.parent is not None:
start = node.pos
end = node.parent.pos
strips.append((start, end))
return strips

def nearest(self, point: Point2D) -> Node:
"""Finds the point in the tree that is closest to `point`."""
min_dist = distance(point, self.root.pos)
closest_node = self.root
for node in self:
dist = distance(point, node.pos)
if dist < min_dist:
closest_node = node
min_dist = dist

return closest_node

def add_node(self, parent: Node, node: Node) -> None:
parent.children.append(node)
node.parent = parent

def in_neighborhood(self, point: Point2D, radius: float) -> list[Node]:
return [node for node in self if distance(node.pos, point) < radius]


class Map:
obstacles: list[tuple[Point2D, Point2D]]

def set_default_map(self) -> None:
segments = [
((0, 0), (0, 1)),
((0, 1), (2, 1)),
((2, 1), (2, 0)),
((2, 0), (0, 0)),
((1.0, 0.0), (1.0, 0.65)),
((1.5, 1.0), (1.5, 0.2)),
((0.4, 0.2), (0.4, 0.8)),
]
for start, end in segments:
self.obstacles.append((np.array(start), np.array(end)))

def log_obstacles(self, path: str) -> None:
rr.log(path, rr.LineStrips2D(self.obstacles))

def __init__(self) -> None:
self.obstacles = [] # List of lines as tuples of (start, end)
self.set_default_map()

def intersects_obstacle(self, start: Point2D, end: Point2D) -> bool:
return not all(
not segments_intersect(start, end, obs_start, obs_end) for (obs_start, obs_end) in self.obstacles
)


def path_to_root(node: Node) -> list[Point2D]:
path = [node.pos]
cur_node = node
while cur_node.parent is not None:
cur_node = cur_node.parent
path.append(cur_node.pos)
return path


def rrt(
mp: Map,
start: Point2D,
end: Point2D,
max_step_size: float,
neighborhood_size: float,
num_iter: int | None,
) -> list[tuple[Point2D, Point2D]] | None:
tree = RRTTree(start)

path = None
step = 0 # How many iterations of the algorithm we have done.
end_node = None
step_found = None

while (num_iter is not None and step < num_iter) or (step_found is None or step < step_found * 3):
random_point = np.multiply(np.random.rand(2), [2, 1])
closest_node = tree.nearest(random_point)
new_point = steer(closest_node.pos, random_point, max_step_size)
intersects_obs = mp.intersects_obstacle(closest_node.pos, new_point)

step += 1
rr.set_time_sequence("step", step)
rr.log("map/new/close_nodes", rr.Clear(recursive=False))
rr.log(
"map/tree/edges",
rr.LineStrips2D(tree.segments(), radii=0.0005, colors=[0, 0, 255, 128]),
)
rr.log(
"map/tree/vertices",
rr.Points2D([node.pos for node in tree], radii=0.002),
# So that we can see the cost at a node by hovering over it.
rr.AnyValues(cost=[float(node.cost) for node in tree]),
)
rr.log("map/new/random_point", rr.Points2D([random_point], radii=0.008))
rr.log("map/new/closest_node", rr.Points2D([closest_node.pos], radii=0.008))
rr.log("map/new/new_point", rr.Points2D([new_point], radii=0.008))

color = np.array([0, 255, 0, 255]).astype(np.uint8)
if intersects_obs:
color = np.array([255, 0, 0, 255]).astype(np.uint8)
rr.log(
"map/new/new_edge",
rr.LineStrips2D([(closest_node.pos, new_point)], colors=[color], radii=0.001),
)

if not intersects_obs:
# Searches for the point in a neighborhood that would result in the minimal cost (distance from start).
close_nodes = tree.in_neighborhood(new_point, neighborhood_size)
rr.log("map/new/close_nodes", rr.Points2D([node.pos for node in close_nodes]))

min_node = min(
filter(
lambda node: not mp.intersects_obstacle(node.pos, new_point),
close_nodes + [closest_node],
),
key=lambda node: node.cost + distance(node.pos, new_point),
)

cost = distance(min_node.pos, new_point)
added_node = Node(min_node, new_point, cost + min_node.cost)
tree.add_node(min_node, added_node)

# Modifies nearby nodes that would be reached faster by going through `added_node`.
for node in close_nodes:
cost = added_node.cost + distance(added_node.pos, node.pos)
if not mp.intersects_obstacle(new_point, node.pos) and cost < node.cost:
parent = node.parent
if parent is not None:
parent.children.remove(node)

node.parent = added_node
node.change_cost(cost - node.cost)
added_node.children.append(node)

if (
distance(new_point, end) < max_step_size
and not mp.intersects_obstacle(new_point, end)
and end_node is None
):
end_node = Node(added_node, end, added_node.cost + distance(new_point, end))
tree.add_node(added_node, end_node)
step_found = step

if end_node:
# Reconstruct shortest path in tree
path = path_to_root(end_node)
segments = [(path[i], path[i + 1]) for i in range(len(path) - 1)]
rr.log(
"map/path",
rr.LineStrips2D(segments, radii=0.002, colors=[0, 255, 255, 255]),
)

return path


def main() -> None:
parser = argparse.ArgumentParser(description="Visualization of the path finding algorithm RRT*.")
rr.script_add_args(parser)
parser.add_argument("--max-step-size", type=float, default=0.1)
parser.add_argument("--iterations", type=int, help="How many iterations it should do")
args = parser.parse_args()
rr.script_setup(args, "")

max_step_size = args.max_step_size
neighborhood_size = max_step_size * 1.5

start_point = np.array([0.2, 0.5])
end_point = np.array([1.8, 0.5])

rr.set_time_sequence("step", 0)
rr.log(
"description",
rr.TextDocument(
"""
Visualizes the path finding algorithm RRT* in a simple environment.
The algorithm finds a [path](recording://map/path) between two points by randomly expanding a [tree](recording://map/tree/edges) from the [start point](recording://map/start).
After it has added a [random edge](recording://map/new/new_edge) to the tree it looks at [nearby nodes](recording://map/new/close_nodes) to check if it's faster to reach them through this [new edge](recording://map/new/new_edge) instead, and if so it changes the parent of these nodes.
This ensures that the algorithm will converge to the optimal path given enough time.
A more detailed explanation can be found in the original paper
Karaman, S. Frazzoli, S. 2011. "Sampling-based algorithms for optimal motion planning".
or in [this medium article](https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378)
""".strip(),
media_type=rr.MediaType.MARKDOWN,
),
)
rr.log(
"map/start",
rr.Points2D([start_point], radii=0.02, colors=[[255, 255, 255, 255]]),
)
rr.log(
"map/destination",
rr.Points2D([end_point], radii=0.02, colors=[[255, 255, 0, 255]]),
)

mp = Map()
mp.log_obstacles("map/obstacles")

__path = rrt(mp, start_point, end_point, max_step_size, neighborhood_size, args.iterations)

rr.script_teardown(args)


if __name__ == "__main__":
main()
2 changes: 2 additions & 0 deletions examples/python/rrt-star/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
numpy
rerun-sdk

0 comments on commit d7ef517

Please sign in to comment.