Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added individual retrying for failed batches #443

Merged
merged 2 commits into from
Jul 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 4 additions & 6 deletions src/autolabel/models/anthropic.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from autolabel.models import BaseModel
from autolabel.cache import BaseCache
from langchain.chat_models import ChatAnthropic
from langchain.schema import Generation, LLMResult, HumanMessage
from langchain.schema import LLMResult, HumanMessage


class AnthropicLLM(BaseModel):
Expand Down Expand Up @@ -40,12 +40,10 @@ def __init__(self, config: AutolabelConfig, cache: BaseCache = None) -> None:
def _label(self, prompts: List[str]) -> LLMResult:
prompts = [[HumanMessage(content=prompt)] for prompt in prompts]
try:
response = self.llm.generate(prompts)
return response
return self.llm.generate(prompts)
except Exception as e:
print(f"Error generating from LLM: {e}, returning empty result")
generations = [[Generation(text="")] for _ in prompts]
return LLMResult(generations=generations)
print(f"Error generating from LLM: {e}, retrying each prompt individually")
return self._label_individually(prompts)

def get_cost(self, prompt: str, label: Optional[str] = "") -> float:
num_prompt_toks = tokenizer.count_tokens(prompt)
Expand Down
22 changes: 21 additions & 1 deletion src/autolabel/models/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
from abc import ABC, abstractmethod
from typing import List, Optional, Dict, Tuple

from langchain.schema import LLMResult
from langchain.schema import LLMResult, Generation

from autolabel.configs import AutolabelConfig
from autolabel.schema import CacheEntry
Expand Down Expand Up @@ -52,6 +52,26 @@ def label(self, prompts: List[str]) -> Tuple[LLMResult, float]:
generations = [existing_prompts[i] for i in range(len(prompts))]
return LLMResult(generations=generations, llm_output=llm_output), cost

def _label_individually(self, prompts: List[str]) -> LLMResult:
"""Label each prompt individually. Should be used only after trying as a batch first.
Args:
prompts (List[str]): List of prompts to label
Returns:
LLMResult: LLMResult object with generations
"""
generations = []
for prompt in prompts:
try:
response = self.llm.generate([prompt])
generations.append(response.generations[0])
except Exception as e:
print(f"Error generating from LLM: {e}, returning empty generation")
generations.append([Generation(text="")])

return LLMResult(generations=generations)

@abstractmethod
def _label(self, prompts: List[str]) -> LLMResult:
# TODO: change return type to do parsing in the Model class
Expand Down
5 changes: 2 additions & 3 deletions src/autolabel/models/cohere.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,9 +41,8 @@ def _label(self, prompts: List[str]) -> LLMResult:
try:
return self.llm.generate(prompts)
except Exception as e:
print(f"Error generating from LLM: {e}, returning empty result")
generations = [[Generation(text="")] for _ in prompts]
return LLMResult(generations=generations)
print(f"Error generating from LLM: {e}, retrying each prompt individually")
return self._label_individually(prompts)

def get_cost(self, prompt: str, label: Optional[str] = "") -> float:
num_prompt_toks = len(self.co.tokenize(prompt).tokens)
Expand Down
7 changes: 3 additions & 4 deletions src/autolabel/models/hf_pipeline.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from typing import List, Optional
from langchain.llms import HuggingFacePipeline
from langchain.schema import LLMResult, Generation
from langchain.schema import LLMResult

from autolabel.models import BaseModel
from autolabel.configs import AutolabelConfig
Expand Down Expand Up @@ -69,9 +69,8 @@ def _label(self, prompts: List[str]) -> LLMResult:
try:
return self.llm.generate(prompts)
except Exception as e:
print(f"Error generating from LLM: {e}, returning empty result")
generations = [[Generation(text="")] for _ in prompts]
return LLMResult(generations=generations)
print(f"Error generating from LLM: {e}, retrying each prompt individually")
return self._label_individually(prompts)

def get_cost(self, prompt: str, label: Optional[str] = "") -> float:
# Model inference for this model is being run locally
Expand Down
7 changes: 3 additions & 4 deletions src/autolabel/models/openai.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.schema import LLMResult, HumanMessage, Generation
from langchain.schema import LLMResult, HumanMessage
import tiktoken

from autolabel.models import BaseModel
Expand Down Expand Up @@ -137,9 +137,8 @@ def _label(self, prompts: List[str]) -> LLMResult:
try:
return self.llm.generate(prompts)
except Exception as e:
print(f"Error generating from LLM: {e}, returning empty result")
generations = [[Generation(text="")] for _ in prompts]
return LLMResult(generations=generations)
print(f"Error generating from LLM: {e}, retrying each prompt individually")
return self._label_individually(prompts)

def get_cost(self, prompt: str, label: Optional[str] = "") -> float:
encoding = tiktoken.encoding_for_model(self.model_name)
Expand Down
29 changes: 26 additions & 3 deletions src/autolabel/models/palm.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,30 @@ def __init__(self, config: AutolabelConfig, cache: BaseCache = None) -> None:
def _label_with_retry(self, prompts: List[str]) -> LLMResult:
return self.llm.generate(prompts)

def _label_individually(self, prompts: List[str]) -> LLMResult:
"""Label each prompt individually. Should be used only after trying as a batch first.
Args:
prompts (List[str]): List of prompts to label
Returns:
LLMResult: LLMResult object with generations
"""
generations = []
for i, prompt in enumerate(prompts):
try:
response = self._label_with_retry([prompt])
for generation in response.generations[0]:
generation.text = generation.text.replace(
self.SEP_REPLACEMENT_TOKEN, "\n"
)
generations.append(response.generations[0])
except Exception as e:
print(f"Error generating from LLM: {e}, returning empty generation")
generations.append([Generation(text="")])

return LLMResult(generations=generations)

def _label(self, prompts: List[str]) -> LLMResult:
for prompt in prompts:
if self.SEP_REPLACEMENT_TOKEN in prompt:
Expand Down Expand Up @@ -94,9 +118,8 @@ def _label(self, prompts: List[str]) -> LLMResult:
)
return result
except Exception as e:
logger.error(f"Error generating from LLM: {e}.")
generations = [[Generation(text="")] for _ in prompts]
return LLMResult(generations=generations)
print(f"Error generating from LLM: {e}, retrying each prompt individually")
self._label_individually(prompts)

def get_cost(self, prompt: str, label: Optional[str] = "") -> float:
if self.model_name is None:
Expand Down