-
Notifications
You must be signed in to change notification settings - Fork 1.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
support for ms coco dataset #13
Open
raingo
wants to merge
6
commits into
rbgirshick:master
Choose a base branch
from
raingo:master
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
9c7abb2
disable visualization in demo
raingo 37ba7ef
finished coding with ms-coco datset
03fabe1
Merge branch 'master' of github.com:raingo/fast-rcnn
06d6621
remove coco from index
raingo 1308f6b
submodule coco api
raingo c9b15d0
finished debug the ms-coco.py
raingo File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
|
||
logs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
TRAIN: | ||
USE_FLIPPED: True | ||
SNAPSHOT_ITERS: 80000 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
#!/bin/bash | ||
|
||
set -x | ||
set -e | ||
|
||
export PYTHONUNBUFFERED="True" | ||
|
||
LOG="experiments/logs/`basename $0`.`date +'%Y-%m-%d_%H-%M-%S'`" | ||
exec &> >(tee -a "$LOG") | ||
echo Logging output to "$LOG" | ||
|
||
time ./tools/train_net.py --gpu $1 \ | ||
--solver models/VGG16/solver-coco.prototxt \ | ||
--cfg experiments/coco.yml \ | ||
--weights data/imagenet_models/VGG16.v2.caffemodel \ | ||
--imdb coco_train2014 \ | ||
--iters 640000 | ||
# there are 40000 iterations for voc_2007_trainval, which contains 5000 images | ||
# voc_2007_trainval contains 40000 images, there are 8 times more images in coco_val2014 than in voc_2007_trainval, so using 320K iterations for coco_val2014 | ||
# there are 2 folds images in coco_train2014, so should be 640K iterations | ||
|
||
exit | ||
|
||
time ./tools/test_net.py --gpu $1 \ | ||
--def models/VGG16/test.prototxt \ | ||
--net output/default/voc_2007_trainval/vgg16_fast_rcnn_iter_40000.caffemodel \ | ||
--imdb coco_val2014 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,330 @@ | ||
# -------------------------------------------------------- | ||
# Fast R-CNN | ||
# Copyright (c) 2015 Microsoft | ||
# Licensed under The MIT License [see LICENSE for details] | ||
# Written by Ross Girshick | ||
# -------------------------------------------------------- | ||
|
||
import datasets, math | ||
import datasets.ms_coco | ||
import os | ||
import datasets.imdb | ||
import xml.dom.minidom as minidom | ||
import numpy as np | ||
import scipy.sparse | ||
import scipy.io as sio | ||
import utils.cython_bbox | ||
import cPickle | ||
import subprocess | ||
|
||
class ms_coco(datasets.imdb): | ||
def __init__(self, image_set, year = 2014, coco_path=None): | ||
datasets.imdb.__init__(self, 'coco_' + image_set + year) | ||
self._year = year | ||
self._image_set = image_set | ||
self._coco_name = image_set + year | ||
self._coco_path = self._get_default_path() if coco_path is None \ | ||
else coco_path | ||
self._COCO = self._load_coco_json() | ||
|
||
cats = self._COCO.loadCats(self._COCO.getCatIds()) | ||
self._classes = tuple(['__background__'] + [cat['name'] for cat in cats]) | ||
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) | ||
self._image_index = self._load_image_set_index() | ||
self._validate_image_index() | ||
# Default to roidb handler | ||
self._roidb_handler = self.selective_search_roidb | ||
|
||
# PASCAL specific config options | ||
self.config = {'top_k' : 2000} | ||
|
||
assert os.path.exists(self._coco_path), \ | ||
'VOCdevkit path does not exist: {}'.format(self._coco_path) | ||
|
||
def _validate_image_index(self): | ||
# training requirs at least one object in the image, remove those without | ||
if int(self._year) == 2007 or self._image_set != 'test': | ||
roidb = self.gt_roidb(False) #disable caching, because we are going to rebuild index | ||
|
||
image_index = [] | ||
for rois, index in zip(roidb, self._image_index): | ||
if rois['gt_overlaps'].size != 0: | ||
image_index.append(index) | ||
self._image_index = image_index | ||
|
||
|
||
def image_path_at(self, i): | ||
""" | ||
Return the absolute path to image i in the image sequence. | ||
""" | ||
return self.image_path_from_index(self._image_index[i]) | ||
|
||
def _get_image_filename(self, index): | ||
return self._COCO.loadImgs(index)[0]['file_name'] | ||
|
||
def image_path_from_index(self, index): | ||
""" | ||
Construct an image path from the image's "index" identifier. | ||
""" | ||
image_path = os.path.join(self._coco_path, 'images', self._coco_name, self._get_image_filename(index)) | ||
assert os.path.exists(image_path), \ | ||
'Path does not exist: {}'.format(image_path) | ||
return image_path | ||
|
||
def _load_image_set_index(self): | ||
""" | ||
Load the indexes listed in this dataset's image set file. | ||
""" | ||
# Example path to image set file: | ||
# self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt | ||
image_index = self._COCO.getImgIds() | ||
return image_index | ||
|
||
def _load_coco_json(self): | ||
import sys | ||
sys.path.append(os.path.join(self._coco_path, 'PythonAPI')) | ||
try: | ||
from pycocotools.coco import COCO | ||
except: | ||
raise Exception("can't find coco API in the coco path: %s" % self._coco_path) | ||
|
||
ann_file = os.path.join(self._coco_path, 'annotations', 'instances_' + self._coco_name + '.json') | ||
return COCO(ann_file) | ||
|
||
def _get_default_path(self): | ||
""" | ||
Return the default path where PASCAL VOC is expected to be installed. | ||
""" | ||
return os.path.join(datasets.ROOT_DIR, 'data', 'coco') | ||
|
||
def gt_roidb(self, caching = True): | ||
""" | ||
Return the database of ground-truth regions of interest. | ||
|
||
This function loads/saves from/to a cache file to speed up future calls. | ||
""" | ||
cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') | ||
if caching and os.path.exists(cache_file): | ||
with open(cache_file, 'rb') as fid: | ||
roidb = cPickle.load(fid) | ||
print '{} gt roidb loaded from {}'.format(self.name, cache_file) | ||
return roidb | ||
|
||
gt_roidb = [self._load_coco_annotation(index) | ||
for index in self.image_index] | ||
|
||
if caching: | ||
with open(cache_file, 'wb') as fid: | ||
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) | ||
print 'wrote gt roidb to {}'.format(cache_file) | ||
|
||
return gt_roidb | ||
|
||
def selective_search_roidb(self): | ||
""" | ||
Return the database of selective search regions of interest. | ||
Ground-truth ROIs are also included. | ||
|
||
This function loads/saves from/to a cache file to speed up future calls. | ||
""" | ||
cache_file = os.path.join(self.cache_path, | ||
self.name + '_selective_search_roidb.pkl') | ||
|
||
if os.path.exists(cache_file): | ||
with open(cache_file, 'rb') as fid: | ||
roidb = cPickle.load(fid) | ||
print '{} ss roidb loaded from {}'.format(self.name, cache_file) | ||
return roidb | ||
|
||
if int(self._year) == 2007 or self._image_set != 'test': | ||
gt_roidb = self.gt_roidb() | ||
ss_roidb = self._load_selective_search_roidb(gt_roidb) | ||
roidb = datasets.imdb.merge_roidbs(gt_roidb, ss_roidb) | ||
else: | ||
roidb = self._load_selective_search_roidb(None) | ||
with open(cache_file, 'wb') as fid: | ||
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) | ||
print 'wrote ss roidb to {}'.format(cache_file) | ||
|
||
return roidb | ||
|
||
def _load_selective_search_roidb(self, gt_roidb): | ||
filename = os.path.abspath(os.path.join(self.cache_path, '..', | ||
'selective_search_data', | ||
self.name + '.mat')) | ||
assert os.path.exists(filename), \ | ||
'Selective search data not found at: {}'.format(filename) | ||
images, boxes = self._load_v73_ss_boxes(filename) | ||
|
||
box_dict = {} | ||
for img, box_tmp in zip(images, boxes): | ||
box_dict[img] = box_tmp[:, (1, 0, 3, 2)] - 1 | ||
|
||
box_list = [] | ||
for index in self._image_index: | ||
file_name = self._get_image_filename(index) | ||
box_list.append(box_dict[file_name]) | ||
|
||
return self.create_roidb_from_box_list(box_list, gt_roidb) | ||
|
||
#http://stackoverflow.com/a/28259682 | ||
#ss file is saved by matlab with -v7.3 | ||
#two variables: boxes and images | ||
# images: cell array of filenames | ||
# boxes: cell array of boxes: | ||
# each cell is a n_boxes * 4 (y1,x1,y2,x2 in Selective Search Code) matrix | ||
def _load_v73_ss_boxes(self, path): | ||
import h5py | ||
|
||
with h5py.File(path) as reader: | ||
|
||
images = [] | ||
for column in reader['images']: | ||
row_data = [] | ||
for row_number in range(len(column)): | ||
row_data.append(''.join(map(unichr, reader[column[row_number]][:]))) | ||
images.append(row_data[0]) | ||
|
||
boxes = [] | ||
for column in reader['boxes']: | ||
row_data = [] | ||
for row_number in range(len(column)): | ||
box_tmp = reader[column[row_number]][:] | ||
row_data.append(np.transpose(box_tmp)) | ||
boxes = row_data | ||
|
||
return images, boxes | ||
|
||
def selective_search_IJCV_roidb(self): | ||
""" | ||
Return the database of selective search regions of interest. | ||
Ground-truth ROIs are also included. | ||
|
||
This function loads/saves from/to a cache file to speed up future calls. | ||
""" | ||
cache_file = os.path.join(self.cache_path, | ||
'{:s}_selective_search_IJCV_top_{:d}_roidb.pkl'. | ||
format(self.name, self.config['top_k'])) | ||
|
||
if os.path.exists(cache_file): | ||
with open(cache_file, 'rb') as fid: | ||
roidb = cPickle.load(fid) | ||
print '{} ss roidb loaded from {}'.format(self.name, cache_file) | ||
return roidb | ||
|
||
gt_roidb = self.gt_roidb() | ||
ss_roidb = self._load_selective_search_IJCV_roidb(gt_roidb) | ||
roidb = datasets.imdb.merge_roidbs(gt_roidb, ss_roidb) | ||
with open(cache_file, 'wb') as fid: | ||
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) | ||
print 'wrote ss roidb to {}'.format(cache_file) | ||
|
||
return roidb | ||
|
||
def _load_selective_search_IJCV_roidb(self, gt_roidb): | ||
IJCV_path = os.path.abspath(os.path.join(self.cache_path, '..', | ||
'selective_search_IJCV_data', | ||
'voc_' + self._year)) | ||
assert os.path.exists(IJCV_path), \ | ||
'Selective search IJCV data not found at: {}'.format(IJCV_path) | ||
|
||
top_k = self.config['top_k'] | ||
box_list = [] | ||
for i in xrange(self.num_images): | ||
filename = os.path.join(IJCV_path, self.image_index[i] + '.mat') | ||
raw_data = sio.loadmat(filename) | ||
box_list.append((raw_data['boxes'][:top_k, :]-1).astype(np.uint16)) | ||
|
||
return self.create_roidb_from_box_list(box_list, gt_roidb) | ||
|
||
def _load_coco_annotation(self, index): | ||
""" | ||
Load image and bounding boxes info from XML file in the PASCAL VOC | ||
format. | ||
""" | ||
annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None) | ||
objs = self._COCO.loadAnns(annIds) | ||
objs = [obj for obj in objs if obj['area'] > 0] | ||
num_objs = len(objs) | ||
|
||
boxes = np.zeros((num_objs, 4), dtype=np.uint16) | ||
gt_classes = np.zeros((num_objs), dtype=np.int32) | ||
overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) | ||
|
||
# Load object bounding boxes into a data frame. | ||
for ix, obj in enumerate(objs): | ||
# Make pixel indexes 0-based | ||
x1 = round(obj['bbox'][0]) | ||
y1 = round(obj['bbox'][1]) | ||
x2 = x1 + math.ceil(obj['bbox'][2]) - 1 | ||
y2 = y1 + math.ceil(obj['bbox'][3]) - 1 | ||
cls = self._class_to_ind[self._COCO.loadCats(obj['category_id'])[0]['name']] | ||
boxes[ix, :] = [x1, y1, x2, y2] | ||
gt_classes[ix] = cls | ||
overlaps[ix, cls] = 1.0 | ||
|
||
overlaps = scipy.sparse.csr_matrix(overlaps) | ||
|
||
return {'boxes' : boxes, | ||
'gt_classes': gt_classes, | ||
'gt_overlaps' : overlaps, | ||
'flipped' : False} | ||
|
||
def _write_voc_results_file(self, all_boxes): | ||
use_salt = self.config['use_salt'] | ||
comp_id = 'comp4' | ||
if use_salt: | ||
comp_id += '-{}'.format(os.getpid()) | ||
|
||
# VOCdevkit/results/VOC2007/Main/comp4-44503_det_test_aeroplane.txt | ||
path = os.path.join(self._devkit_path, 'results', 'VOC' + self._year, | ||
'Main', comp_id + '_') | ||
for cls_ind, cls in enumerate(self.classes): | ||
if cls == '__background__': | ||
continue | ||
print 'Writing {} VOC results file'.format(cls) | ||
filename = path + 'det_' + self._image_set + '_' + cls + '.txt' | ||
with open(filename, 'wt') as f: | ||
for im_ind, index in enumerate(self.image_index): | ||
dets = all_boxes[cls_ind][im_ind] | ||
if dets == []: | ||
continue | ||
# the VOCdevkit expects 1-based indices | ||
for k in xrange(dets.shape[0]): | ||
f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. | ||
format(index, dets[k, -1], | ||
dets[k, 0] + 1, dets[k, 1] + 1, | ||
dets[k, 2] + 1, dets[k, 3] + 1)) | ||
return comp_id | ||
|
||
def _do_matlab_eval(self, comp_id, output_dir='output'): | ||
rm_results = self.config['cleanup'] | ||
|
||
path = os.path.join(os.path.dirname(__file__), | ||
'VOCdevkit-matlab-wrapper') | ||
cmd = 'cd {} && '.format(path) | ||
cmd += '{:s} -nodisplay -nodesktop '.format(datasets.MATLAB) | ||
cmd += '-r "dbstop if error; ' | ||
cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\',{:d}); quit;"' \ | ||
.format(self._devkit_path, comp_id, | ||
self._image_set, output_dir, int(rm_results)) | ||
print('Running:\n{}'.format(cmd)) | ||
status = subprocess.call(cmd, shell=True) | ||
|
||
def evaluate_detections(self, all_boxes, output_dir): | ||
raise Exception("not implemented") | ||
comp_id = self._write_voc_results_file(all_boxes) | ||
self._do_matlab_eval(comp_id, output_dir) | ||
|
||
def competition_mode(self, on): | ||
if on: | ||
self.config['use_salt'] = False | ||
self.config['cleanup'] = False | ||
else: | ||
self.config['use_salt'] = True | ||
self.config['cleanup'] = True | ||
|
||
if __name__ == '__main__': | ||
d = datasets.ms_coco('val', '2014') | ||
res = d.roidb | ||
from IPython import embed; embed() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Shouldn't this be
boxes.append(row_data)
?