Skip to content

Conversation

@ericl
Copy link
Contributor

@ericl ericl commented May 31, 2019

What do these changes do?

Flesh out pytorch example, make sure examples run.

Related issue number

Closes #4904

Linter

  • I've run scripts/format.sh to lint the changes in this PR.

@ericl ericl force-pushed the fix-custom-pol branch from b0ec251 to a51a7b6 Compare May 31, 2019 08:30
@AmplabJenkins
Copy link

Test FAILed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins//job/Ray-PRB/14524/
Test FAILed.

@AmplabJenkins
Copy link

Test FAILed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins//job/Ray-PRB/14525/
Test FAILed.

@ericl ericl added the tests-ok The tagger certifies test failures are unrelated and assumes personal liability. label May 31, 2019
@AmplabJenkins
Copy link

Test FAILed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins//job/Ray-PRB/14538/
Test FAILed.

@ericl
Copy link
Contributor Author

ericl commented Jun 1, 2019

Friendly ping on review.

@ericl ericl merged commit 1c073e9 into ray-project:master Jun 1, 2019
@AmplabJenkins
Copy link

Test FAILed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins//job/Ray-Perf-Integration-PRB/1038/
Test FAILed.

@AmplabJenkins
Copy link

Test FAILed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins//job/Ray-Perf-Integration-PRB/1052/
Test FAILed.

stefanpantic added a commit to wingman-ai/ray that referenced this pull request Jun 6, 2019
* [rllib] Remove dependency on TensorFlow (ray-project#4764)

* remove hard tf dep

* add test

* comment fix

* fix test

* Dynamic Custom Resources - create and delete resources (ray-project#3742)

* Update tutorial link in doc (ray-project#4777)

* [rllib] Implement learn_on_batch() in torch policy graph

* Fix `ray stop` by killing raylet before plasma (ray-project#4778)

* Fatal check if object store dies (ray-project#4763)

* [rllib] fix clip by value issue as TF upgraded (ray-project#4697)

*  fix clip_by_value issue

*  fix typo

* [autoscaler] Fix submit (ray-project#4782)

* Queue tasks in the raylet in between async callbacks (ray-project#4766)

* Add a SWAP TaskQueue so that we can keep track of tasks that are temporarily dequeued

* Fix bug where tasks that fail to be forwarded don't appear to be local by adding them to SWAP queue

* cleanups

* updates

* updates

* [Java][Bazel]  Refine auto-generated pom files (ray-project#4780)

* Bump version to 0.7.0 (ray-project#4791)

* [JAVA] setDefaultUncaughtExceptionHandler to log uncaught exception in user thread. (ray-project#4798)

* Add WorkerUncaughtExceptionHandler

* Fix

* revert bazel and pom

* [tune] Fix CLI test (ray-project#4801)

* Fix pom file generation (ray-project#4800)

* [rllib] Support continuous action distributions in IMPALA/APPO (ray-project#4771)

* [rllib] TensorFlow 2 compatibility (ray-project#4802)

* Change tagline in documentation and README. (ray-project#4807)

* Update README.rst, index.rst, tutorial.rst and  _config.yml

* [tune] Support non-arg submit (ray-project#4803)

* [autoscaler] rsync cluster (ray-project#4785)

* [tune] Remove extra parsing functionality (ray-project#4804)

* Fix Java worker log dir (ray-project#4781)

* [tune] Initial track integration (ray-project#4362)

Introduces a minimally invasive utility for logging experiment results. A broad requirement for this tool is that it should integrate seamlessly with Tune execution.

* [rllib] [RFC] Dynamic definition of loss functions and modularization support (ray-project#4795)

* dynamic graph

* wip

* clean up

* fix

* document trainer

* wip

* initialize the graph using a fake batch

* clean up dynamic init

* wip

* spelling

* use builder for ppo pol graph

* add ppo graph

* fix naming

* order

* docs

* set class name correctly

* add torch builder

* add custom model support in builder

* cleanup

* remove underscores

* fix py2 compat

* Update dynamic_tf_policy_graph.py

* Update tracking_dict.py

* wip

* rename

* debug level

* rename policy_graph -> policy in new classes

* fix test

* rename ppo tf policy

* port appo too

* forgot grads

* default policy optimizer

* make default config optional

* add config to optimizer

* use lr by default in optimizer

* update

* comments

* remove optimizer

* fix tuple actions support in dynamic tf graph

* [rllib] Rename PolicyGraph => Policy, move from evaluation/ to policy/ (ray-project#4819)

This implements some of the renames proposed in ray-project#4813
We leave behind backwards-compatibility aliases for *PolicyGraph and SampleBatch.

* [Java] Dynamic resource API in Java (ray-project#4824)

* Add default values for Wgym flags

* Fix import

* Fix issue when starting `raylet_monitor` (ray-project#4829)

* Refactor ID Serial 1: Separate ObjectID and TaskID from UniqueID (ray-project#4776)

* Enable BaseId.

* Change TaskID and make python test pass

* Remove unnecessary functions and fix test failure and change TaskID to
16 bytes.

* Java code change draft

* Refine

* Lint

* Update java/api/src/main/java/org/ray/api/id/TaskId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/BaseId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/BaseId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/ObjectId.java

Co-Authored-By: Hao Chen <[email protected]>

* Address comment

* Lint

* Fix SINGLE_PROCESS

* Fix comments

* Refine code

* Refine test

* Resolve conflict

* Fix bug in which actor classes are not exported multiple times. (ray-project#4838)

* Bump Ray master version to 0.8.0.dev0 (ray-project#4845)

* Add section to bump version of master branch and cleanup release docs (ray-project#4846)

* Fix import

* Export remote functions when first used and also fix bug in which rem… (ray-project#4844)

* Export remote functions when first used and also fix bug in which remote functions and actor classes are not exported from workers during subsequent ray sessions.

* Documentation update

* Fix tests.

* Fix grammar

* Update wheel versions in documentation to 0.8.0.dev0 and 0.7.0. (ray-project#4847)

* [tune] Later expansion of local_dir (ray-project#4806)

* [rllib] [RFC] Deprecate Python 2 / RLlib (ray-project#4832)

* Fix a typo in kubernetes yaml (ray-project#4872)

* Move global state API out of global_state object. (ray-project#4857)

* Install bazel in autoscaler development configs. (ray-project#4874)

* [tune] Fix up Ax Search and Examples (ray-project#4851)

* update Ax for cleaner API

* docs update

* [rllib] Update concepts docs and add "Building Policies in Torch/TensorFlow" section (ray-project#4821)

* wip

* fix index

* fix bugs

* todo

* add imports

* note on get ph

* note on get ph

* rename to building custom algs

* add rnn state info

* [rllib] Fix error getting kl when simple_optimizer: True in multi-agent PPO

* Replace ReturnIds with NumReturns in TaskInfo to reduce the size (ray-project#4854)

* Refine TaskInfo

* Fix

* Add a test to print task info size

* Lint

* Refine

* Update deps commits of opencensus to support building with bzl 0.25.x (ray-project#4862)

* Update deps to support bzl 2.5.x

* Fix

* Upgrade arrow to latest master (ray-project#4858)

* [tune] Auto-init Ray + default SearchAlg (ray-project#4815)

* Bump version from 0.8.0.dev0 to 0.7.1. (ray-project#4890)

* [rllib] Allow access to batches prior to postprocessing (ray-project#4871)

* [rllib] Fix Multidiscrete support (ray-project#4869)

* Refactor redis callback handling (ray-project#4841)

* Add CallbackReply

* Fix

* fix linting by format.sh

* Fix linting

* Address comments.

* Fix

* Initial high-level code structure of CoreWorker. (ray-project#4875)

* Drop duplicated string format (ray-project#4897)

This string format is unnecessary. java_worker_options has been appended to the commandline later.

* Refactor ID Serial 2: change all ID functions to `CamelCase` (ray-project#4896)

* Hotfix for change of from_random to FromRandom (ray-project#4909)

* [rllib] Fix documentation on custom policies (ray-project#4910)

* wip

* add docs

* lint

* todo sections

* fix doc

* [rllib] Allow Torch policies access to full action input dict in extra_action_out_fn (ray-project#4894)

* fix torch extra out

* preserve setitem

* fix docs

* [tune] Pretty print params json in logger.py (ray-project#4903)

* [sgd] Distributed Training via PyTorch (ray-project#4797)

Implements distributed SGD using distributed PyTorch.

* [rllib] Rough port of DQN to build_tf_policy() pattern (ray-project#4823)

* fetching objects in parallel in _get_arguments_for_execution (ray-project#4775)

* [tune] Disallow setting resources_per_trial when it is already configured (ray-project#4880)

* disallow it

* import fix

* fix example

* fix test

* fix tests

* Update mock.py

* fix

* make less convoluted

* fix tests

* [rllib] Rename PolicyEvaluator => RolloutWorker (ray-project#4820)

* Fix local cluster yaml (ray-project#4918)

* [tune] Directional metrics for components (ray-project#4120) (ray-project#4915)

* [Core Worker] implement ObjectInterface and add test framework (ray-project#4899)

* [tune] Make PBT Quantile fraction configurable (ray-project#4912)

* Better organize ray_common module (ray-project#4898)

* Fix error

* Fix compute actions return value
stefanpantic added a commit to wingman-ai/ray that referenced this pull request Jun 21, 2019
* [rllib] Remove dependency on TensorFlow (ray-project#4764)

* remove hard tf dep

* add test

* comment fix

* fix test

* Dynamic Custom Resources - create and delete resources (ray-project#3742)

* Update tutorial link in doc (ray-project#4777)

* [rllib] Implement learn_on_batch() in torch policy graph

* Fix `ray stop` by killing raylet before plasma (ray-project#4778)

* Fatal check if object store dies (ray-project#4763)

* [rllib] fix clip by value issue as TF upgraded (ray-project#4697)

*  fix clip_by_value issue

*  fix typo

* [autoscaler] Fix submit (ray-project#4782)

* Queue tasks in the raylet in between async callbacks (ray-project#4766)

* Add a SWAP TaskQueue so that we can keep track of tasks that are temporarily dequeued

* Fix bug where tasks that fail to be forwarded don't appear to be local by adding them to SWAP queue

* cleanups

* updates

* updates

* [Java][Bazel]  Refine auto-generated pom files (ray-project#4780)

* Bump version to 0.7.0 (ray-project#4791)

* [JAVA] setDefaultUncaughtExceptionHandler to log uncaught exception in user thread. (ray-project#4798)

* Add WorkerUncaughtExceptionHandler

* Fix

* revert bazel and pom

* [tune] Fix CLI test (ray-project#4801)

* Fix pom file generation (ray-project#4800)

* [rllib] Support continuous action distributions in IMPALA/APPO (ray-project#4771)

* [rllib] TensorFlow 2 compatibility (ray-project#4802)

* Change tagline in documentation and README. (ray-project#4807)

* Update README.rst, index.rst, tutorial.rst and  _config.yml

* [tune] Support non-arg submit (ray-project#4803)

* [autoscaler] rsync cluster (ray-project#4785)

* [tune] Remove extra parsing functionality (ray-project#4804)

* Fix Java worker log dir (ray-project#4781)

* [tune] Initial track integration (ray-project#4362)

Introduces a minimally invasive utility for logging experiment results. A broad requirement for this tool is that it should integrate seamlessly with Tune execution.

* [rllib] [RFC] Dynamic definition of loss functions and modularization support (ray-project#4795)

* dynamic graph

* wip

* clean up

* fix

* document trainer

* wip

* initialize the graph using a fake batch

* clean up dynamic init

* wip

* spelling

* use builder for ppo pol graph

* add ppo graph

* fix naming

* order

* docs

* set class name correctly

* add torch builder

* add custom model support in builder

* cleanup

* remove underscores

* fix py2 compat

* Update dynamic_tf_policy_graph.py

* Update tracking_dict.py

* wip

* rename

* debug level

* rename policy_graph -> policy in new classes

* fix test

* rename ppo tf policy

* port appo too

* forgot grads

* default policy optimizer

* make default config optional

* add config to optimizer

* use lr by default in optimizer

* update

* comments

* remove optimizer

* fix tuple actions support in dynamic tf graph

* [rllib] Rename PolicyGraph => Policy, move from evaluation/ to policy/ (ray-project#4819)

This implements some of the renames proposed in ray-project#4813
We leave behind backwards-compatibility aliases for *PolicyGraph and SampleBatch.

* [Java] Dynamic resource API in Java (ray-project#4824)

* Add default values for Wgym flags

* Fix import

* Fix issue when starting `raylet_monitor` (ray-project#4829)

* Refactor ID Serial 1: Separate ObjectID and TaskID from UniqueID (ray-project#4776)

* Enable BaseId.

* Change TaskID and make python test pass

* Remove unnecessary functions and fix test failure and change TaskID to
16 bytes.

* Java code change draft

* Refine

* Lint

* Update java/api/src/main/java/org/ray/api/id/TaskId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/BaseId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/BaseId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/ObjectId.java

Co-Authored-By: Hao Chen <[email protected]>

* Address comment

* Lint

* Fix SINGLE_PROCESS

* Fix comments

* Refine code

* Refine test

* Resolve conflict

* Fix bug in which actor classes are not exported multiple times. (ray-project#4838)

* Bump Ray master version to 0.8.0.dev0 (ray-project#4845)

* Add section to bump version of master branch and cleanup release docs (ray-project#4846)

* Fix import

* Export remote functions when first used and also fix bug in which rem… (ray-project#4844)

* Export remote functions when first used and also fix bug in which remote functions and actor classes are not exported from workers during subsequent ray sessions.

* Documentation update

* Fix tests.

* Fix grammar

* Update wheel versions in documentation to 0.8.0.dev0 and 0.7.0. (ray-project#4847)

* [tune] Later expansion of local_dir (ray-project#4806)

* [rllib] [RFC] Deprecate Python 2 / RLlib (ray-project#4832)

* Fix a typo in kubernetes yaml (ray-project#4872)

* Move global state API out of global_state object. (ray-project#4857)

* Install bazel in autoscaler development configs. (ray-project#4874)

* [tune] Fix up Ax Search and Examples (ray-project#4851)

* update Ax for cleaner API

* docs update

* [rllib] Update concepts docs and add "Building Policies in Torch/TensorFlow" section (ray-project#4821)

* wip

* fix index

* fix bugs

* todo

* add imports

* note on get ph

* note on get ph

* rename to building custom algs

* add rnn state info

* [rllib] Fix error getting kl when simple_optimizer: True in multi-agent PPO

* Replace ReturnIds with NumReturns in TaskInfo to reduce the size (ray-project#4854)

* Refine TaskInfo

* Fix

* Add a test to print task info size

* Lint

* Refine

* Update deps commits of opencensus to support building with bzl 0.25.x (ray-project#4862)

* Update deps to support bzl 2.5.x

* Fix

* Upgrade arrow to latest master (ray-project#4858)

* [tune] Auto-init Ray + default SearchAlg (ray-project#4815)

* Bump version from 0.8.0.dev0 to 0.7.1. (ray-project#4890)

* [rllib] Allow access to batches prior to postprocessing (ray-project#4871)

* [rllib] Fix Multidiscrete support (ray-project#4869)

* Refactor redis callback handling (ray-project#4841)

* Add CallbackReply

* Fix

* fix linting by format.sh

* Fix linting

* Address comments.

* Fix

* Initial high-level code structure of CoreWorker. (ray-project#4875)

* Drop duplicated string format (ray-project#4897)

This string format is unnecessary. java_worker_options has been appended to the commandline later.

* Refactor ID Serial 2: change all ID functions to `CamelCase` (ray-project#4896)

* Hotfix for change of from_random to FromRandom (ray-project#4909)

* [rllib] Fix documentation on custom policies (ray-project#4910)

* wip

* add docs

* lint

* todo sections

* fix doc

* [rllib] Allow Torch policies access to full action input dict in extra_action_out_fn (ray-project#4894)

* fix torch extra out

* preserve setitem

* fix docs

* [tune] Pretty print params json in logger.py (ray-project#4903)

* [sgd] Distributed Training via PyTorch (ray-project#4797)

Implements distributed SGD using distributed PyTorch.

* [rllib] Rough port of DQN to build_tf_policy() pattern (ray-project#4823)

* fetching objects in parallel in _get_arguments_for_execution (ray-project#4775)

* [tune] Disallow setting resources_per_trial when it is already configured (ray-project#4880)

* disallow it

* import fix

* fix example

* fix test

* fix tests

* Update mock.py

* fix

* make less convoluted

* fix tests

* [rllib] Rename PolicyEvaluator => RolloutWorker (ray-project#4820)

* Fix local cluster yaml (ray-project#4918)

* [tune] Directional metrics for components (ray-project#4120) (ray-project#4915)

* [Core Worker] implement ObjectInterface and add test framework (ray-project#4899)

* [tune] Make PBT Quantile fraction configurable (ray-project#4912)

* Better organize ray_common module (ray-project#4898)

* Fix error

* [tune] Add requirements-dev.txt and update docs for contributing (ray-project#4925)

* Add requirements-dev.txt and update docs.

* Update doc/source/tune-contrib.rst

Co-Authored-By: Richard Liaw <[email protected]>

* Unpin everything except for yapf.

* Fix compute actions return value

* Bump version from 0.7.1 to 0.8.0.dev1. (ray-project#4937)

* Update version number in documentation after release 0.7.0 -> 0.7.1 and 0.8.0.dev0 -> 0.8.0.dev1. (ray-project#4941)

* [doc] Update developer docs with bazel instructions (ray-project#4944)

* [C++] Add hash table to Redis-Module (ray-project#4911)

* Flush lineage cache on task submission instead of execution (ray-project#4942)

* [rllib] Add docs on how to use TF eager execution (ray-project#4927)

* [rllib] Port remainder of algorithms to build_trainer() pattern (ray-project#4920)

* Fix resource bookkeeping bug with acquiring unknown resource. (ray-project#4945)

* Update aws keys for uploading wheels to s3. (ray-project#4948)

* Upload wheels on Travis to branchname/commit_id. (ray-project#4949)

* [Java] Fix serializing issues of `RaySerializer` (ray-project#4887)

* Fix

* Address comment.

* fix (ray-project#4950)

* [Java] Add inner class `Builder` to build call options. (ray-project#4956)

* Add Builder class

* format

* Refactor by IDE

* Remove uncessary dependency

* Make release stress tests work and improve them. (ray-project#4955)

* Use proper session directory for debug_string.txt (ray-project#4960)

* [core] Use int64_t instead of int to keep track of fractional resources (ray-project#4959)

* [core worker] add task submission & execution interface (ray-project#4922)

* [sgd] Add non-distributed PyTorch runner (ray-project#4933)

* Add non-distributed PyTorch runner

* use dist.is_available() instead of checking OS

* Nicer exception

* Fix bug in choosing port

* Refactor some code

* Address comments

* Address comments

* Flush all tasks from local lineage cache after a node failure (ray-project#4964)

* Remove typing from setup.py install_requirements. (ray-project#4971)

* [Java] Fix bug of `BaseID` in multi-threading case. (ray-project#4974)

* [rllib] Fix DDPG example (ray-project#4973)

* Upgrade CI clang-format to 6.0 (ray-project#4976)

* [Core worker] add store & task provider (ray-project#4966)

* Fix bugs in the a3c code template. (ray-project#4984)

* Inherit Function Docstrings and other metedata (ray-project#4985)

* Fix a crash when unknown worker registering to raylet (ray-project#4992)

* [gRPC] Use gRPC for inter-node-manager communication (ray-project#4968)
stefanpantic added a commit to wingman-ai/ray that referenced this pull request Jun 26, 2019
* [rllib] Remove dependency on TensorFlow (ray-project#4764)

* remove hard tf dep

* add test

* comment fix

* fix test

* Dynamic Custom Resources - create and delete resources (ray-project#3742)

* Update tutorial link in doc (ray-project#4777)

* [rllib] Implement learn_on_batch() in torch policy graph

* Fix `ray stop` by killing raylet before plasma (ray-project#4778)

* Fatal check if object store dies (ray-project#4763)

* [rllib] fix clip by value issue as TF upgraded (ray-project#4697)

*  fix clip_by_value issue

*  fix typo

* [autoscaler] Fix submit (ray-project#4782)

* Queue tasks in the raylet in between async callbacks (ray-project#4766)

* Add a SWAP TaskQueue so that we can keep track of tasks that are temporarily dequeued

* Fix bug where tasks that fail to be forwarded don't appear to be local by adding them to SWAP queue

* cleanups

* updates

* updates

* [Java][Bazel]  Refine auto-generated pom files (ray-project#4780)

* Bump version to 0.7.0 (ray-project#4791)

* [JAVA] setDefaultUncaughtExceptionHandler to log uncaught exception in user thread. (ray-project#4798)

* Add WorkerUncaughtExceptionHandler

* Fix

* revert bazel and pom

* [tune] Fix CLI test (ray-project#4801)

* Fix pom file generation (ray-project#4800)

* [rllib] Support continuous action distributions in IMPALA/APPO (ray-project#4771)

* [rllib] TensorFlow 2 compatibility (ray-project#4802)

* Change tagline in documentation and README. (ray-project#4807)

* Update README.rst, index.rst, tutorial.rst and  _config.yml

* [tune] Support non-arg submit (ray-project#4803)

* [autoscaler] rsync cluster (ray-project#4785)

* [tune] Remove extra parsing functionality (ray-project#4804)

* Fix Java worker log dir (ray-project#4781)

* [tune] Initial track integration (ray-project#4362)

Introduces a minimally invasive utility for logging experiment results. A broad requirement for this tool is that it should integrate seamlessly with Tune execution.

* [rllib] [RFC] Dynamic definition of loss functions and modularization support (ray-project#4795)

* dynamic graph

* wip

* clean up

* fix

* document trainer

* wip

* initialize the graph using a fake batch

* clean up dynamic init

* wip

* spelling

* use builder for ppo pol graph

* add ppo graph

* fix naming

* order

* docs

* set class name correctly

* add torch builder

* add custom model support in builder

* cleanup

* remove underscores

* fix py2 compat

* Update dynamic_tf_policy_graph.py

* Update tracking_dict.py

* wip

* rename

* debug level

* rename policy_graph -> policy in new classes

* fix test

* rename ppo tf policy

* port appo too

* forgot grads

* default policy optimizer

* make default config optional

* add config to optimizer

* use lr by default in optimizer

* update

* comments

* remove optimizer

* fix tuple actions support in dynamic tf graph

* [rllib] Rename PolicyGraph => Policy, move from evaluation/ to policy/ (ray-project#4819)

This implements some of the renames proposed in ray-project#4813
We leave behind backwards-compatibility aliases for *PolicyGraph and SampleBatch.

* [Java] Dynamic resource API in Java (ray-project#4824)

* Add default values for Wgym flags

* Fix import

* Fix issue when starting `raylet_monitor` (ray-project#4829)

* Refactor ID Serial 1: Separate ObjectID and TaskID from UniqueID (ray-project#4776)

* Enable BaseId.

* Change TaskID and make python test pass

* Remove unnecessary functions and fix test failure and change TaskID to
16 bytes.

* Java code change draft

* Refine

* Lint

* Update java/api/src/main/java/org/ray/api/id/TaskId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/BaseId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/BaseId.java

Co-Authored-By: Hao Chen <[email protected]>

* Update java/api/src/main/java/org/ray/api/id/ObjectId.java

Co-Authored-By: Hao Chen <[email protected]>

* Address comment

* Lint

* Fix SINGLE_PROCESS

* Fix comments

* Refine code

* Refine test

* Resolve conflict

* Fix bug in which actor classes are not exported multiple times. (ray-project#4838)

* Bump Ray master version to 0.8.0.dev0 (ray-project#4845)

* Add section to bump version of master branch and cleanup release docs (ray-project#4846)

* Fix import

* Export remote functions when first used and also fix bug in which rem… (ray-project#4844)

* Export remote functions when first used and also fix bug in which remote functions and actor classes are not exported from workers during subsequent ray sessions.

* Documentation update

* Fix tests.

* Fix grammar

* Update wheel versions in documentation to 0.8.0.dev0 and 0.7.0. (ray-project#4847)

* [tune] Later expansion of local_dir (ray-project#4806)

* [rllib] [RFC] Deprecate Python 2 / RLlib (ray-project#4832)

* Fix a typo in kubernetes yaml (ray-project#4872)

* Move global state API out of global_state object. (ray-project#4857)

* Install bazel in autoscaler development configs. (ray-project#4874)

* [tune] Fix up Ax Search and Examples (ray-project#4851)

* update Ax for cleaner API

* docs update

* [rllib] Update concepts docs and add "Building Policies in Torch/TensorFlow" section (ray-project#4821)

* wip

* fix index

* fix bugs

* todo

* add imports

* note on get ph

* note on get ph

* rename to building custom algs

* add rnn state info

* [rllib] Fix error getting kl when simple_optimizer: True in multi-agent PPO

* Replace ReturnIds with NumReturns in TaskInfo to reduce the size (ray-project#4854)

* Refine TaskInfo

* Fix

* Add a test to print task info size

* Lint

* Refine

* Update deps commits of opencensus to support building with bzl 0.25.x (ray-project#4862)

* Update deps to support bzl 2.5.x

* Fix

* Upgrade arrow to latest master (ray-project#4858)

* [tune] Auto-init Ray + default SearchAlg (ray-project#4815)

* Bump version from 0.8.0.dev0 to 0.7.1. (ray-project#4890)

* [rllib] Allow access to batches prior to postprocessing (ray-project#4871)

* [rllib] Fix Multidiscrete support (ray-project#4869)

* Refactor redis callback handling (ray-project#4841)

* Add CallbackReply

* Fix

* fix linting by format.sh

* Fix linting

* Address comments.

* Fix

* Initial high-level code structure of CoreWorker. (ray-project#4875)

* Drop duplicated string format (ray-project#4897)

This string format is unnecessary. java_worker_options has been appended to the commandline later.

* Refactor ID Serial 2: change all ID functions to `CamelCase` (ray-project#4896)

* Hotfix for change of from_random to FromRandom (ray-project#4909)

* [rllib] Fix documentation on custom policies (ray-project#4910)

* wip

* add docs

* lint

* todo sections

* fix doc

* [rllib] Allow Torch policies access to full action input dict in extra_action_out_fn (ray-project#4894)

* fix torch extra out

* preserve setitem

* fix docs

* [tune] Pretty print params json in logger.py (ray-project#4903)

* [sgd] Distributed Training via PyTorch (ray-project#4797)

Implements distributed SGD using distributed PyTorch.

* [rllib] Rough port of DQN to build_tf_policy() pattern (ray-project#4823)

* fetching objects in parallel in _get_arguments_for_execution (ray-project#4775)

* [tune] Disallow setting resources_per_trial when it is already configured (ray-project#4880)

* disallow it

* import fix

* fix example

* fix test

* fix tests

* Update mock.py

* fix

* make less convoluted

* fix tests

* [rllib] Rename PolicyEvaluator => RolloutWorker (ray-project#4820)

* Fix local cluster yaml (ray-project#4918)

* [tune] Directional metrics for components (ray-project#4120) (ray-project#4915)

* [Core Worker] implement ObjectInterface and add test framework (ray-project#4899)

* [tune] Make PBT Quantile fraction configurable (ray-project#4912)

* Better organize ray_common module (ray-project#4898)

* Fix error

* [tune] Add requirements-dev.txt and update docs for contributing (ray-project#4925)

* Add requirements-dev.txt and update docs.

* Update doc/source/tune-contrib.rst

Co-Authored-By: Richard Liaw <[email protected]>

* Unpin everything except for yapf.

* Fix compute actions return value

* Bump version from 0.7.1 to 0.8.0.dev1. (ray-project#4937)

* Update version number in documentation after release 0.7.0 -> 0.7.1 and 0.8.0.dev0 -> 0.8.0.dev1. (ray-project#4941)

* [doc] Update developer docs with bazel instructions (ray-project#4944)

* [C++] Add hash table to Redis-Module (ray-project#4911)

* Flush lineage cache on task submission instead of execution (ray-project#4942)

* [rllib] Add docs on how to use TF eager execution (ray-project#4927)

* [rllib] Port remainder of algorithms to build_trainer() pattern (ray-project#4920)

* Fix resource bookkeeping bug with acquiring unknown resource. (ray-project#4945)

* Update aws keys for uploading wheels to s3. (ray-project#4948)

* Upload wheels on Travis to branchname/commit_id. (ray-project#4949)

* [Java] Fix serializing issues of `RaySerializer` (ray-project#4887)

* Fix

* Address comment.

* fix (ray-project#4950)

* [Java] Add inner class `Builder` to build call options. (ray-project#4956)

* Add Builder class

* format

* Refactor by IDE

* Remove uncessary dependency

* Make release stress tests work and improve them. (ray-project#4955)

* Use proper session directory for debug_string.txt (ray-project#4960)

* [core] Use int64_t instead of int to keep track of fractional resources (ray-project#4959)

* [core worker] add task submission & execution interface (ray-project#4922)

* [sgd] Add non-distributed PyTorch runner (ray-project#4933)

* Add non-distributed PyTorch runner

* use dist.is_available() instead of checking OS

* Nicer exception

* Fix bug in choosing port

* Refactor some code

* Address comments

* Address comments

* Flush all tasks from local lineage cache after a node failure (ray-project#4964)

* Remove typing from setup.py install_requirements. (ray-project#4971)

* [Java] Fix bug of `BaseID` in multi-threading case. (ray-project#4974)

* [rllib] Fix DDPG example (ray-project#4973)

* Upgrade CI clang-format to 6.0 (ray-project#4976)

* [Core worker] add store & task provider (ray-project#4966)

* Fix bugs in the a3c code template. (ray-project#4984)

* Inherit Function Docstrings and other metedata (ray-project#4985)

* Fix a crash when unknown worker registering to raylet (ray-project#4992)

* [gRPC] Use gRPC for inter-node-manager communication (ray-project#4968)

* Fix Java CI failure (ray-project#4995)

* fix handling of non-integral timeout values in signal.receive (ray-project#5002)

* temp fix for build (ray-project#5006)

* [tune] Tutorial UX Changes (ray-project#4990)

* add integration, iris, ASHA, recursive changes, set reuse_actors=True, and enable Analysis as a return object

* docstring

* fix up example

* fix

* cleanup tests

* experiment analysis

* Fix valgrind build by installing new version of valgrind (ray-project#5008)

* Fix no cpus test (ray-project#5009)

* Fix tensorflow-1.14 installation in jenkins (ray-project#5007)

* Add dynamic worker options for worker command. (ray-project#4970)

* Add fields for fbs

* WIP

* Fix complition errors

* Add java part

* FIx

* Fix

* Fix

* Fix lint

* Refine API

* address comments and add test

* Fix

* Address comment.

* Address comments.

* Fix linting

* Refine

* Fix lint

* WIP: address comment.

* Fix java

* Fix py

* Refin

* Fix

* Fix

* Fix linting

* Fix lint

* Address comments

* WIP

* Fix

* Fix

* minor refine

* Fix lint

* Fix raylet test.

* Fix lint

* Update src/ray/raylet/worker_pool.h

Co-Authored-By: Hao Chen <[email protected]>

* Update java/runtime/src/main/java/org/ray/runtime/AbstractRayRuntime.java

Co-Authored-By: Hao Chen <[email protected]>

* Address comments.

* Address comments.

* Fix test.

* Update src/ray/raylet/worker_pool.h

Co-Authored-By: Hao Chen <[email protected]>

* Address comments.

* Address comments.

* Fix

* Fix lint

* Fix lint

* Fix

* Address comments.

* Fix linting

* [docs] docs for running Tensorboard without sudo (ray-project#5015)

* Instructions for running Tensorboard without sudo

When we run Tensorboard to visualize the results of Ray outputs on multi-user clusters where we don't have sudo access, such as RISE clusters, a few commands need to first be run to make sure tensorboard can edit the tmp directory. This is a pretty common usecase so I figured we may as well put it in the documentation for Tune.

* Update tune-usage.rst

* [ci] Change Jenkins to py3 (ray-project#5022)

* conda3

* integration

* add nevergrad, remotedata

* pytest 0.3.1

* otherdockers

* setup

* tune

* [gRPC] Migrate gcs data structures to protobuf (ray-project#5024)

* [rllib] Add QMIX mixer parameters to optimizer param list (ray-project#5014)

* add mixer params

* Update qmix_policy.py

* [grpc] refactor rpc server to support multiple io services (ray-project#5023)

* [rllib] Give error if sample_async is used with pytorch for A3C (ray-project#5000)

* give error if sample_async is used with pytorch

* update

* Update a3c.py

* [tune] Update MNIST Example (ray-project#4991)

* Add entropy coeff schedule

* Revert "Merge with ray master"

This reverts commit 108bfa2, reversing
changes made to 2e0eec9.

* Revert "Revert "Merge with ray master""

This reverts commit 92c0f88.

* Remove entropy decay stuff
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

tests-ok The tagger certifies test failures are unrelated and assumes personal liability.

Projects

None yet

Development

Successfully merging this pull request may close these issues.

[rllib] [docs] Absence of learning rate parameter for optimizer in COMMON_CONFIG

3 participants