Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 10 additions & 7 deletions python/ray/rllib/models/visionnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ def _build_layers_v2(self, input_dict, num_outputs, options):
inputs = input_dict["obs"]
filters = options.get("conv_filters")
if not filters:
filters = get_filter_config(options)
filters = get_filter_config(inputs)

activation = get_activation_fn(options.get("conv_activation"))

Expand Down Expand Up @@ -47,7 +47,7 @@ def _build_layers_v2(self, input_dict, num_outputs, options):
return flatten(fc2), flatten(fc1)


def get_filter_config(options):
def get_filter_config(inputs):
filters_84x84 = [
[16, [8, 8], 4],
[32, [4, 4], 2],
Expand All @@ -58,12 +58,15 @@ def get_filter_config(options):
[32, [4, 4], 2],
[256, [11, 11], 1],
]
dim = options.get("dim")
if dim == 84:
shape = inputs.shape.as_list()[1:]
if len(shape) == 3 and shape[:2] == [84, 84]:
return filters_84x84
elif dim == 42:
elif len(shape) == 3 and shape[:2] == [42, 42]:
return filters_42x42
else:
raise ValueError(
"No default configuration for image size={}".format(dim) +
", you must specify `conv_filters` manually as a model option.")
"No default configuration for obs input {}".format(inputs) +
", you must specify `conv_filters` manually as a model option. "
"Default configurations are only available for inputs of size "
"[?, 42, 42, K] and [?, 84, 84, K]. You may alternatively want "
"to use a custom model or preprocessor.")
4 changes: 2 additions & 2 deletions python/ray/rllib/test/test_catalog.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,13 +72,13 @@ def testDefaultModels(self):

with tf.variable_scope("test1"):
p1 = ModelCatalog.get_model({
"obs": np.zeros((10, 3), dtype=np.float32)
"obs": tf.zeros((10, 3), dtype=tf.float32)
}, Box(0, 1, shape=(3, ), dtype=np.float32), 5, {})
self.assertEqual(type(p1), FullyConnectedNetwork)

with tf.variable_scope("test2"):
p2 = ModelCatalog.get_model({
"obs": np.zeros((10, 84, 84, 3), dtype=np.float32)
"obs": tf.zeros((10, 84, 84, 3), dtype=tf.float32)
}, Box(0, 1, shape=(84, 84, 3), dtype=np.float32), 5, {})
self.assertEqual(type(p2), VisionNetwork)

Expand Down