- Support Vector Machine
- Logistic Regression
- Random Forest Classifier
- KNN -On task
- Decision Tree -On task
- Naive Bayes -On task
- Confusion Matrix
- Accuracy
- Precision
- Recall
- AUC ROC
- ROC Curve
- Precision Recall Curve
- Validation Curve -On task
- Learning Curve -On task
First Get the repository files Downloading or Clonning the repository Now open the folder using any ide or editor and select python. Now navigate to console and type
streamlit run app.py
It will open in localhost server. Now you can use it easily.
def main():
st.title('Binary Classification Web App')
st.sidebar.title('Binary Classifier App')
st.markdown("Are Your Mashroom poisonous?")
st.sidebar.markdown("Are Your Mashroom poisonous?")
@st.cache(persist = True)
def load_data():
df = pd.read_csv('data/mushrooms.csv')
le = LabelEncoder()
for col in df.columns:
df[col] = le.fit_transform(df[col])
return df
Change the title,sidebar title,markdown and sidebar markdown according to your project.
Make sure you have all necessery python library installed. For this projects you need
- Numpy
- Pandas
- Streamlit
- Scikit-learn
if you don't have these libraries go to python or anaconda prompt and paste these:
pip install numpy
pip install pandas
pip install streamlit
pip install sklearn
Connect- Linkedin
Website- RakibHHridoy