A package for analysing COVID-19 Argentina’s outbreak
Release | Usage | Development |
---|---|---|
Install the R package using the following commands on the R console:
# install.packages("devtools")
devtools::install_github("rOpenStats/COVID19AR")
First add variable with your preferred configurations in ~/.Renviron
.
COVID19AR_data_dir is mandatory while COVID19AR_credits can be
configured if you want to publish your own research.
COVID19AR_data_dir = "~/.R/COVID19AR"
COVID19AR_credits = "@youralias"
library(COVID19AR)
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#> Loading required package: knitr
#> Loading required package: magrittr
#> Loading required package: lgr
#> Warning: replacing previous import 'ggplot2::Layout' by 'lgr::Layout' when
#> loading 'COVID19AR'
#> Warning: replacing previous import 'readr::col_factor' by 'scales::col_factor'
#> when loading 'COVID19AR'
#> Warning: replacing previous import 'magrittr::not' by 'testthat::not' when
#> loading 'COVID19AR'
#> Warning: replacing previous import 'dplyr::matches' by 'testthat::matches' when
#> loading 'COVID19AR'
#> Warning: replacing previous import 'magrittr::equals' by 'testthat::equals' when
#> loading 'COVID19AR'
#> Warning: replacing previous import 'magrittr::is_less_than' by
#> 'testthat::is_less_than' when loading 'COVID19AR'
library(ggplot2)
#>
#> Attaching package: 'ggplot2'
#> The following object is masked from 'package:lgr':
#>
#> Layout
opendata From Ministerio de Salud de la Nación Argentina
log.dir <- file.path(getEnv("data_dir"), "logs")
dir.create(log.dir, recursive = TRUE, showWarnings = FALSE)
log.file <- file.path(log.dir, "covid19ar.log")
lgr::get_logger("root")$add_appender(AppenderFile$new(log.file))
lgr::threshold("info", lgr::get_logger("root"))
lgr::threshold("info", lgr::get_logger("COVID19ARCurator"))
# Data from
# http://datos.salud.gob.ar/dataset/covid-19-casos-registrados-en-la-republica-argentina
covid19.curator <- COVID19ARCurator$new(report.date = Sys.Date() -1 ,
download.new.data = FALSE)
dummy <- covid19.curator$loadData()
#> INFO [09:16:18.046] Exists dest path? {dest.path: ~/.R/COVID19AR/Covid19Casos.csv, exists.dest.path: TRUE}
dummy <- covid19.curator$curateData()
#> INFO [09:16:33.751] Normalize
#> INFO [09:16:39.024] checkSoundness
#> INFO [09:16:41.136] Mutating data
# Dates of current processed file
max(covid19.curator$data$fecha_apertura, na.rm = TRUE)
#> [1] "2020-11-11"
# Inicio de síntomas
max(covid19.curator$data$fecha_inicio_sintomas, na.rm = TRUE)
#> [1] "2020-11-11"
# Ultima muerte
max(covid19.curator$data$fecha_fallecimiento, na.rm = TRUE)
#> [1] "2020-11-11"
report.date <- max(covid19.curator$data$fecha_inicio_sintomas, na.rm = TRUE)
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = NULL)
kable(covid19.ar.summary %>% select(max_fecha_diagnostico, confirmados, fallecidos, letalidad.min.porc, letalidad.max.porc, count_fecha_diagnostico, tests, positividad.porc))
max_fecha_diagnostico | confirmados | fallecidos | letalidad.min.porc | letalidad.max.porc | count_fecha_diagnostico | tests | positividad.porc |
---|---|---|---|---|---|---|---|
2020-11-11 | 1273347 | 34531 | 0.023 | 0.027 | 267 | 2599339 | 0.49 |
covid19.ar.provincia.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre"))
covid19.ar.provincia.summary.100.confirmed <- covid19.ar.provincia.summary %>%
filter(confirmados >= 100) %>%
arrange(desc(confirmados))
# Provinces with > 100 confirmed cases
kable(covid19.ar.provincia.summary.100.confirmed %>% select(residencia_provincia_nombre, confirmados, fallecidos, confirmados, fallecidos, letalidad.min.porc, letalidad.max.porc, count_fecha_diagnostico, tests, positividad.porc))
residencia_provincia_nombre | confirmados | fallecidos | letalidad.min.porc | letalidad.max.porc | count_fecha_diagnostico | tests | positividad.porc |
---|---|---|---|---|---|---|---|
Buenos Aires | 577838 | 18862 | 0.028 | 0.033 | 259 | 1222024 | 0.473 |
CABA | 151000 | 5172 | 0.032 | 0.034 | 257 | 423290 | 0.357 |
Santa Fe | 122821 | 1835 | 0.013 | 0.015 | 243 | 149744 | 0.820 |
Córdoba | 97413 | 1580 | 0.012 | 0.016 | 249 | 172476 | 0.565 |
Tucumán | 57081 | 958 | 0.011 | 0.017 | 238 | 66247 | 0.862 |
Mendoza | 51879 | 1004 | 0.016 | 0.019 | 248 | 93235 | 0.556 |
Río Negro | 27329 | 692 | 0.022 | 0.025 | 240 | 44119 | 0.619 |
Neuquén | 25878 | 459 | 0.013 | 0.018 | 242 | 32942 | 0.786 |
Salta | 19786 | 915 | 0.037 | 0.046 | 235 | 37208 | 0.532 |
Entre Ríos | 18955 | 349 | 0.015 | 0.018 | 241 | 33156 | 0.572 |
Jujuy | 18070 | 837 | 0.038 | 0.046 | 237 | 45000 | 0.402 |
Chubut | 18047 | 236 | 0.010 | 0.013 | 228 | 19408 | 0.930 |
Chaco | 15511 | 472 | 0.022 | 0.030 | 245 | 66230 | 0.234 |
Tierra del Fuego | 13662 | 171 | 0.012 | 0.013 | 239 | 20325 | 0.672 |
Santiago del Estero | 11910 | 146 | 0.010 | 0.012 | 229 | 39414 | 0.302 |
Santa Cruz | 11777 | 183 | 0.012 | 0.016 | 234 | 18448 | 0.638 |
San Luis | 10180 | 123 | 0.008 | 0.012 | 224 | 28773 | 0.354 |
La Rioja | 7955 | 294 | 0.034 | 0.037 | 232 | 21573 | 0.369 |
La Pampa | 4380 | 46 | 0.009 | 0.011 | 223 | 17569 | 0.249 |
San Juan | 4114 | 102 | 0.016 | 0.025 | 230 | 4712 | 0.873 |
Corrientes | 3244 | 58 | 0.012 | 0.018 | 238 | 15056 | 0.215 |
SIN ESPECIFICAR | 2697 | 26 | 0.008 | 0.010 | 234 | 6444 | 0.419 |
Catamarca | 1301 | 2 | 0.001 | 0.002 | 218 | 12126 | 0.107 |
Misiones | 359 | 7 | 0.012 | 0.019 | 217 | 7915 | 0.045 |
Formosa | 160 | 2 | 0.008 | 0.013 | 213 | 1905 | 0.084 |
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre"))
nrow(covid19.ar.summary)
#> [1] 25
porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))]
kable((covid19.ar.summary %>% filter(confirmados > 0) %>% arrange(desc(confirmados))) %>%
select_at(c("residencia_provincia_nombre", "confirmados", "tests", "fallecidos", "dias.fallecimiento",porc.cols)))
residencia_provincia_nombre | confirmados | tests | fallecidos | dias.fallecimiento | letalidad.min.porc | letalidad.max.porc | positividad.porc | internados.porc | cuidado.intensivo.porc | respirador.porc |
---|---|---|---|---|---|---|---|---|---|---|
Buenos Aires | 577838 | 1222024 | 18862 | 16.9 | 0.028 | 0.033 | 0.473 | 0.064 | 0.010 | 0.005 |
CABA | 151000 | 423290 | 5172 | 17.2 | 0.032 | 0.034 | 0.357 | 0.143 | 0.018 | 0.009 |
Santa Fe | 122821 | 149744 | 1835 | 13.1 | 0.013 | 0.015 | 0.820 | 0.025 | 0.007 | 0.004 |
Córdoba | 97413 | 172476 | 1580 | 13.1 | 0.012 | 0.016 | 0.565 | 0.020 | 0.009 | 0.003 |
Tucumán | 57081 | 66247 | 958 | 11.6 | 0.011 | 0.017 | 0.862 | 0.007 | 0.002 | 0.001 |
Mendoza | 51879 | 93235 | 1004 | 12.4 | 0.016 | 0.019 | 0.556 | 0.061 | 0.007 | 0.004 |
Río Negro | 27329 | 44119 | 692 | 15.2 | 0.022 | 0.025 | 0.619 | 0.141 | 0.006 | 0.004 |
Neuquén | 25878 | 32942 | 459 | 18.0 | 0.013 | 0.018 | 0.786 | 0.346 | 0.009 | 0.007 |
Salta | 19786 | 37208 | 915 | 14.2 | 0.037 | 0.046 | 0.532 | 0.105 | 0.020 | 0.011 |
Entre Ríos | 18955 | 33156 | 349 | 15.4 | 0.015 | 0.018 | 0.572 | 0.067 | 0.007 | 0.003 |
Jujuy | 18070 | 45000 | 837 | 19.0 | 0.038 | 0.046 | 0.402 | 0.023 | 0.010 | 0.006 |
Chubut | 18047 | 19408 | 236 | 11.2 | 0.010 | 0.013 | 0.930 | 0.010 | 0.003 | 0.002 |
Chaco | 15511 | 66230 | 472 | 14.4 | 0.022 | 0.030 | 0.234 | 0.077 | 0.040 | 0.019 |
Tierra del Fuego | 13662 | 20325 | 171 | 15.0 | 0.012 | 0.013 | 0.672 | 0.017 | 0.006 | 0.005 |
Santiago del Estero | 11910 | 39414 | 146 | 11.1 | 0.010 | 0.012 | 0.302 | 0.013 | 0.002 | 0.001 |
Santa Cruz | 11777 | 18448 | 183 | 15.5 | 0.012 | 0.016 | 0.638 | 0.056 | 0.012 | 0.009 |
San Luis | 10180 | 28773 | 123 | 12.7 | 0.008 | 0.012 | 0.354 | 0.023 | 0.006 | 0.005 |
La Rioja | 7955 | 21573 | 294 | 16.9 | 0.034 | 0.037 | 0.369 | 0.007 | 0.002 | 0.001 |
La Pampa | 4380 | 17569 | 46 | 14.5 | 0.009 | 0.011 | 0.249 | 0.021 | 0.005 | 0.002 |
San Juan | 4114 | 4712 | 102 | 10.7 | 0.016 | 0.025 | 0.873 | 0.024 | 0.010 | 0.003 |
Corrientes | 3244 | 15056 | 58 | 10.2 | 0.012 | 0.018 | 0.215 | 0.024 | 0.016 | 0.011 |
SIN ESPECIFICAR | 2697 | 6444 | 26 | 23.1 | 0.008 | 0.010 | 0.419 | 0.064 | 0.008 | 0.004 |
Catamarca | 1301 | 12126 | 2 | 16.0 | 0.001 | 0.002 | 0.107 | 0.013 | 0.002 | 0.000 |
Misiones | 359 | 7915 | 7 | 9.5 | 0.012 | 0.019 | 0.045 | 0.217 | 0.028 | 0.014 |
Formosa | 160 | 1905 | 2 | 12.0 | 0.008 | 0.013 | 0.084 | 0.419 | 0.000 | 0.000 |
rg <- ReportGeneratorCOVID19AR$new(covid19ar.curator = covid19.curator)
rg$preprocess()
#>
#> ── Column specification ────────────────────────────────────────────────────────
#> cols(
#> .default = col_double(),
#> residencia_provincia_nombre = col_character(),
#> residencia_departamento_nombre = col_character(),
#> fecha_apertura = col_date(format = ""),
#> max_fecha_diagnostico = col_date(format = ""),
#> max_fecha_inicio_sintomas = col_date(format = ""),
#> confirmados.inc = col_logical(),
#> confirmados.rate = col_logical(),
#> fallecidos.inc = col_logical(),
#> tests.inc = col_logical(),
#> tests.rate = col_logical(),
#> sospechosos.inc = col_logical()
#> )
#> ℹ Use `spec()` for the full column specifications.
rg$getDepartamentosExponentialGrowthPlot()
#> Scale for 'y' is already present. Adding another scale for 'y', which will
#> replace the existing scale.
rg$getDepartamentosCrossSectionConfirmedPostivityPlot()
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("sepi_apertura"))
#> INFO [09:25:18.568] Processing {current.group: }
nrow(covid19.ar.summary)
#> [1] 37
porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))]
kable(covid19.ar.summary %>%
filter(confirmados > 0) %>%
arrange(sepi_apertura, desc(confirmados)) %>%
select_at(c("sepi_apertura", "max_fecha_diagnostico", "count_fecha_diagnostico", "confirmados", "tests", "internados", "fallecidos", porc.cols)))
sepi_apertura | max_fecha_diagnostico | count_fecha_diagnostico | confirmados | tests | internados | fallecidos | letalidad.min.porc | letalidad.max.porc | positividad.porc | internados.porc | cuidado.intensivo.porc | respirador.porc |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 2020-11-03 | 22 | 16 | 87 | 9 | 1 | 0.053 | 0.062 | 0.184 | 0.562 | 0.125 | 0.125 |
11 | 2020-11-03 | 48 | 103 | 671 | 69 | 9 | 0.069 | 0.087 | 0.154 | 0.670 | 0.117 | 0.058 |
12 | 2020-11-03 | 84 | 430 | 2059 | 265 | 17 | 0.034 | 0.040 | 0.209 | 0.616 | 0.088 | 0.051 |
13 | 2020-11-07 | 141 | 1140 | 5539 | 625 | 66 | 0.051 | 0.058 | 0.206 | 0.548 | 0.090 | 0.054 |
14 | 2020-11-07 | 195 | 1894 | 11580 | 1024 | 121 | 0.056 | 0.064 | 0.164 | 0.541 | 0.090 | 0.053 |
15 | 2020-11-10 | 232 | 2663 | 20319 | 1401 | 190 | 0.062 | 0.071 | 0.131 | 0.526 | 0.084 | 0.047 |
16 | 2020-11-11 | 251 | 3620 | 31956 | 1791 | 258 | 0.061 | 0.071 | 0.113 | 0.495 | 0.074 | 0.040 |
17 | 2020-11-11 | 256 | 4910 | 46042 | 2361 | 385 | 0.068 | 0.078 | 0.107 | 0.481 | 0.067 | 0.035 |
18 | 2020-11-11 | 256 | 6069 | 59270 | 2804 | 494 | 0.071 | 0.081 | 0.102 | 0.462 | 0.060 | 0.031 |
19 | 2020-11-11 | 257 | 7711 | 73440 | 3442 | 609 | 0.070 | 0.079 | 0.105 | 0.446 | 0.056 | 0.029 |
20 | 2020-11-11 | 258 | 10292 | 90917 | 4341 | 736 | 0.064 | 0.072 | 0.113 | 0.422 | 0.052 | 0.027 |
21 | 2020-11-11 | 258 | 14981 | 114448 | 5748 | 954 | 0.057 | 0.064 | 0.131 | 0.384 | 0.047 | 0.023 |
22 | 2020-11-11 | 258 | 20511 | 139964 | 7284 | 1227 | 0.054 | 0.060 | 0.147 | 0.355 | 0.043 | 0.021 |
23 | 2020-11-11 | 258 | 27338 | 168361 | 8903 | 1561 | 0.052 | 0.057 | 0.162 | 0.326 | 0.040 | 0.019 |
24 | 2020-11-11 | 259 | 37402 | 203669 | 11150 | 1992 | 0.048 | 0.053 | 0.184 | 0.298 | 0.036 | 0.017 |
25 | 2020-11-11 | 259 | 50658 | 245314 | 13637 | 2557 | 0.046 | 0.050 | 0.207 | 0.269 | 0.031 | 0.014 |
26 | 2020-11-11 | 259 | 69073 | 297885 | 16869 | 3328 | 0.044 | 0.048 | 0.232 | 0.244 | 0.028 | 0.013 |
27 | 2020-11-11 | 259 | 88435 | 349534 | 19806 | 4178 | 0.043 | 0.047 | 0.253 | 0.224 | 0.026 | 0.011 |
28 | 2020-11-11 | 260 | 112533 | 409145 | 23284 | 5290 | 0.042 | 0.047 | 0.275 | 0.207 | 0.024 | 0.011 |
29 | 2020-11-11 | 262 | 142354 | 481908 | 27103 | 6619 | 0.042 | 0.046 | 0.295 | 0.190 | 0.023 | 0.010 |
30 | 2020-11-11 | 262 | 181015 | 568816 | 30965 | 8115 | 0.040 | 0.045 | 0.318 | 0.171 | 0.021 | 0.010 |
31 | 2020-11-11 | 262 | 221415 | 660050 | 34409 | 9531 | 0.039 | 0.043 | 0.335 | 0.155 | 0.019 | 0.009 |
32 | 2020-11-11 | 262 | 271709 | 769564 | 38405 | 11257 | 0.037 | 0.041 | 0.353 | 0.141 | 0.018 | 0.008 |
33 | 2020-11-11 | 262 | 319515 | 884864 | 42279 | 12858 | 0.036 | 0.040 | 0.361 | 0.132 | 0.017 | 0.008 |
34 | 2020-11-11 | 262 | 369247 | 996669 | 46184 | 14660 | 0.035 | 0.040 | 0.370 | 0.125 | 0.016 | 0.008 |
35 | 2020-11-11 | 262 | 435262 | 1133509 | 50911 | 16775 | 0.034 | 0.039 | 0.384 | 0.117 | 0.016 | 0.007 |
36 | 2020-11-11 | 262 | 505848 | 1276668 | 55401 | 18984 | 0.033 | 0.038 | 0.396 | 0.110 | 0.015 | 0.007 |
37 | 2020-11-11 | 262 | 581896 | 1430449 | 60184 | 21259 | 0.033 | 0.037 | 0.407 | 0.103 | 0.014 | 0.007 |
38 | 2020-11-11 | 262 | 656077 | 1575809 | 64553 | 23394 | 0.032 | 0.036 | 0.416 | 0.098 | 0.014 | 0.007 |
39 | 2020-11-11 | 263 | 734813 | 1717120 | 69087 | 25572 | 0.031 | 0.035 | 0.428 | 0.094 | 0.013 | 0.007 |
40 | 2020-11-11 | 265 | 820362 | 1857306 | 73365 | 27706 | 0.030 | 0.034 | 0.442 | 0.089 | 0.013 | 0.006 |
41 | 2020-11-11 | 266 | 911659 | 1997663 | 77543 | 29819 | 0.029 | 0.033 | 0.456 | 0.085 | 0.012 | 0.006 |
42 | 2020-11-11 | 266 | 1006567 | 2131484 | 81102 | 31734 | 0.028 | 0.032 | 0.472 | 0.081 | 0.012 | 0.006 |
43 | 2020-11-11 | 266 | 1101223 | 2269990 | 83748 | 33166 | 0.026 | 0.030 | 0.485 | 0.076 | 0.011 | 0.006 |
44 | 2020-11-11 | 267 | 1179513 | 2394707 | 85679 | 34088 | 0.025 | 0.029 | 0.493 | 0.073 | 0.011 | 0.005 |
45 | 2020-11-11 | 267 | 1245616 | 2527240 | 86929 | 34476 | 0.024 | 0.028 | 0.493 | 0.070 | 0.010 | 0.005 |
46 | 2020-11-11 | 267 | 1273347 | 2599339 | 87260 | 34531 | 0.023 | 0.027 | 0.490 | 0.069 | 0.010 | 0.005 |
```r
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre", "sepi_apertura"))
#> INFO [09:30:43.778] Processing {current.group: residencia_provincia_nombre = Buenos Aires}
#> INFO [09:33:36.621] Processing {current.group: residencia_provincia_nombre = CABA}
#> INFO [09:35:04.643] Processing {current.group: residencia_provincia_nombre = Catamarca}
#> INFO [09:35:09.849] Processing {current.group: residencia_provincia_nombre = Chaco}
#> INFO [09:35:23.570] Processing {current.group: residencia_provincia_nombre = Chubut}
#> INFO [09:35:30.657] Processing {current.group: residencia_provincia_nombre = Córdoba}
#> INFO [09:35:58.139] Processing {current.group: residencia_provincia_nombre = Corrientes}
#> INFO [09:36:06.147] Processing {current.group: residencia_provincia_nombre = Entre Ríos}
#> INFO [09:36:16.205] Processing {current.group: residencia_provincia_nombre = Formosa}
#> INFO [09:36:21.339] Processing {current.group: residencia_provincia_nombre = Jujuy}
#> INFO [09:36:31.495] Processing {current.group: residencia_provincia_nombre = La Pampa}
#> INFO [09:36:36.401] Processing {current.group: residencia_provincia_nombre = La Rioja}
#> INFO [09:36:43.305] Processing {current.group: residencia_provincia_nombre = Mendoza}
#> INFO [09:36:56.125] Processing {current.group: residencia_provincia_nombre = Misiones}
#> INFO [09:37:01.038] Processing {current.group: residencia_provincia_nombre = Neuquén}
#> INFO [09:37:09.288] Processing {current.group: residencia_provincia_nombre = Río Negro}
#> INFO [09:37:18.764] Processing {current.group: residencia_provincia_nombre = Salta}
#> INFO [09:37:26.661] Processing {current.group: residencia_provincia_nombre = San Juan}
#> INFO [09:37:30.934] Processing {current.group: residencia_provincia_nombre = San Luis}
#> INFO [09:37:36.372] Processing {current.group: residencia_provincia_nombre = Santa Cruz}
#> INFO [09:37:41.907] Processing {current.group: residencia_provincia_nombre = Santa Fe}
#> INFO [09:38:03.763] Processing {current.group: residencia_provincia_nombre = Santiago del Estero}
#> INFO [09:38:11.776] Processing {current.group: residencia_provincia_nombre = SIN ESPECIFICAR}
#> INFO [09:38:17.153] Processing {current.group: residencia_provincia_nombre = Tierra del Fuego}
#> INFO [09:38:23.531] Processing {current.group: residencia_provincia_nombre = Tucumán}
nrow(covid19.ar.summary)
#> [1] 868
porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))]
sepi.fechas <- covid19.curator$data %>%
group_by(sepi_apertura) %>%
summarize(ultima_fecha_sepi = max(fecha_apertura), .groups = "keep")
data2plot <- covid19.ar.summary %>%
filter(residencia_provincia_nombre %in% covid19.ar.provincia.summary.100.confirmed$residencia_provincia_nombre) %>%
filter(confirmados > 0 ) %>%
filter(positividad.porc <=0.6 | confirmados >= 20)
data2plot %<>% inner_join(sepi.fechas, by = "sepi_apertura")
dates <- sort(unique(data2plot$ultima_fecha_sepi))
covplot <- data2plot %>%
ggplot(aes(x = ultima_fecha_sepi, y = confirmados, color = "confirmados")) +
geom_line() +
facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
labs(title = "Evolución de casos confirmados y tests\n en provincias > 100 confirmados")
covplot <- covplot +
geom_line(aes(x = ultima_fecha_sepi, y = tests, color = "tests")) +
facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y")
covplot <- setupTheme(covplot, report.date = report.date, x.values = dates, x.type = "dates",
total.colors = 2,
data.provider.abv = "@msalnacion", base.size = 6)
covplot <- covplot + scale_y_log10()
#> Scale for 'y' is already present. Adding another scale for 'y', which will
#> replace the existing scale.
covplot
covplot <- data2plot %>%
ggplot(aes(x = ultima_fecha_sepi, y = positividad.porc, color = "positividad.porc")) +
geom_line() +
facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
labs(title = "Porcentajes de positividad, uso de UCI, respirador y letalidad\n en provincias > 100 confirmados")
covplot <- covplot +
geom_line(aes(x = ultima_fecha_sepi, y = cuidado.intensivo.porc, color = "cuidado.intensivo.porc")) +
facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y")
covplot <- covplot +
geom_line(aes(x = ultima_fecha_sepi, y = respirador.porc, color = "respirador.porc"))+
facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y")
covplot <- covplot +
geom_line(aes(x = ultima_fecha_sepi, y = letalidad.min.porc, color = "letalidad.min.porc")) +
facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y")
covplot <- setupTheme(covplot, report.date = report.date, x.values = dates, x.type = "dates",
total.colors = 4,
data.provider.abv = "@msalnacion", base.size = 6)
covplot
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre", "sexo"))
#> Warning in max.default(structure(c(NA_real_, NA_real_, NA_real_, NA_real_, : no
#> non-missing arguments to max; returning -Inf
nrow(covid19.ar.summary)
#> [1] 71
porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))]
kable((covid19.ar.summary %>% filter(confirmados >= 10) %>% arrange(desc(confirmados))) %>% select_at(c("residencia_provincia_nombre", "sexo", "confirmados", "internados", "fallecidos", porc.cols)))
residencia_provincia_nombre | sexo | confirmados | internados | fallecidos | letalidad.min.porc | letalidad.max.porc | positividad.porc | internados.porc | cuidado.intensivo.porc | respirador.porc |
---|---|---|---|---|---|---|---|---|---|---|
Buenos Aires | M | 291985 | 20373 | 10453 | 0.031 | 0.036 | 0.486 | 0.070 | 0.012 | 0.006 |
Buenos Aires | F | 283847 | 16692 | 8286 | 0.025 | 0.029 | 0.460 | 0.059 | 0.008 | 0.003 |
CABA | F | 76190 | 10317 | 2414 | 0.029 | 0.032 | 0.336 | 0.135 | 0.013 | 0.006 |
CABA | M | 74198 | 11112 | 2705 | 0.034 | 0.036 | 0.381 | 0.150 | 0.022 | 0.012 |
Santa Fe | F | 62802 | 1344 | 810 | 0.012 | 0.013 | 0.811 | 0.021 | 0.005 | 0.003 |
Santa Fe | M | 59961 | 1684 | 1022 | 0.015 | 0.017 | 0.831 | 0.028 | 0.009 | 0.005 |
Córdoba | F | 49834 | 916 | 659 | 0.010 | 0.013 | 0.560 | 0.018 | 0.007 | 0.002 |
Córdoba | M | 47532 | 1048 | 918 | 0.015 | 0.019 | 0.570 | 0.022 | 0.010 | 0.003 |
Tucumán | M | 29087 | 245 | 599 | 0.013 | 0.021 | 0.815 | 0.008 | 0.002 | 0.001 |
Tucumán | F | 27966 | 174 | 359 | 0.008 | 0.013 | 0.916 | 0.006 | 0.001 | 0.001 |
Mendoza | F | 26064 | 1408 | 392 | 0.012 | 0.015 | 0.544 | 0.054 | 0.004 | 0.002 |
Mendoza | M | 25610 | 1730 | 608 | 0.019 | 0.024 | 0.571 | 0.068 | 0.010 | 0.006 |
Río Negro | F | 14126 | 1943 | 281 | 0.018 | 0.020 | 0.603 | 0.138 | 0.005 | 0.003 |
Río Negro | M | 13184 | 1914 | 411 | 0.028 | 0.031 | 0.638 | 0.145 | 0.008 | 0.006 |
Neuquén | F | 13016 | 4513 | 170 | 0.010 | 0.013 | 0.775 | 0.347 | 0.006 | 0.004 |
Neuquén | M | 12852 | 4449 | 288 | 0.017 | 0.022 | 0.796 | 0.346 | 0.012 | 0.010 |
Salta | M | 10934 | 1238 | 609 | 0.045 | 0.056 | 0.539 | 0.113 | 0.024 | 0.014 |
Jujuy | M | 10057 | 276 | 545 | 0.044 | 0.054 | 0.407 | 0.027 | 0.013 | 0.009 |
Chubut | M | 9653 | 104 | 131 | 0.011 | 0.014 | 0.922 | 0.011 | 0.004 | 0.003 |
Entre Ríos | F | 9563 | 601 | 129 | 0.011 | 0.013 | 0.551 | 0.063 | 0.005 | 0.002 |
Entre Ríos | M | 9383 | 661 | 217 | 0.019 | 0.023 | 0.595 | 0.070 | 0.009 | 0.003 |
Salta | F | 8795 | 835 | 303 | 0.027 | 0.034 | 0.524 | 0.095 | 0.015 | 0.007 |
Chubut | F | 8360 | 83 | 104 | 0.010 | 0.012 | 0.942 | 0.010 | 0.003 | 0.002 |
Jujuy | F | 7990 | 138 | 290 | 0.030 | 0.036 | 0.395 | 0.017 | 0.006 | 0.004 |
Chaco | M | 7752 | 634 | 300 | 0.028 | 0.039 | 0.240 | 0.082 | 0.047 | 0.023 |
Chaco | F | 7751 | 557 | 172 | 0.016 | 0.022 | 0.229 | 0.072 | 0.034 | 0.015 |
Tierra del Fuego | M | 7003 | 161 | 122 | 0.016 | 0.017 | 0.686 | 0.023 | 0.008 | 0.007 |
Tierra del Fuego | F | 6642 | 76 | 49 | 0.007 | 0.007 | 0.657 | 0.011 | 0.003 | 0.002 |
Santiago del Estero | M | 6326 | 101 | 91 | 0.012 | 0.014 | 0.290 | 0.016 | 0.002 | 0.001 |
Santa Cruz | M | 6143 | 375 | 120 | 0.015 | 0.020 | 0.675 | 0.061 | 0.017 | 0.012 |
Santa Cruz | F | 5624 | 279 | 63 | 0.009 | 0.011 | 0.602 | 0.050 | 0.008 | 0.006 |
Santiago del Estero | F | 5577 | 59 | 55 | 0.008 | 0.010 | 0.329 | 0.011 | 0.001 | 0.001 |
San Luis | M | 5214 | 141 | 79 | 0.010 | 0.015 | 0.364 | 0.027 | 0.008 | 0.006 |
San Luis | F | 4956 | 97 | 44 | 0.006 | 0.009 | 0.344 | 0.020 | 0.003 | 0.003 |
La Rioja | M | 4124 | 29 | 187 | 0.041 | 0.045 | 0.375 | 0.007 | 0.002 | 0.000 |
La Rioja | F | 3797 | 24 | 103 | 0.025 | 0.027 | 0.362 | 0.006 | 0.002 | 0.001 |
La Pampa | F | 2296 | 46 | 21 | 0.008 | 0.009 | 0.239 | 0.020 | 0.004 | 0.001 |
San Juan | M | 2250 | 48 | 56 | 0.016 | 0.025 | 0.858 | 0.021 | 0.010 | 0.004 |
La Pampa | M | 2054 | 43 | 25 | 0.011 | 0.012 | 0.261 | 0.021 | 0.007 | 0.002 |
Buenos Aires | NR | 2006 | 159 | 123 | 0.045 | 0.061 | 0.480 | 0.079 | 0.017 | 0.007 |
San Juan | F | 1859 | 49 | 46 | 0.015 | 0.025 | 0.892 | 0.026 | 0.011 | 0.002 |
Corrientes | M | 1686 | 54 | 41 | 0.016 | 0.024 | 0.210 | 0.032 | 0.023 | 0.015 |
SIN ESPECIFICAR | F | 1601 | 91 | 11 | 0.006 | 0.007 | 0.412 | 0.057 | 0.006 | 0.002 |
Corrientes | F | 1558 | 23 | 17 | 0.007 | 0.011 | 0.222 | 0.015 | 0.010 | 0.006 |
SIN ESPECIFICAR | M | 1089 | 79 | 14 | 0.011 | 0.013 | 0.430 | 0.073 | 0.009 | 0.006 |
Catamarca | M | 759 | 9 | 2 | 0.002 | 0.003 | 0.107 | 0.012 | 0.000 | 0.000 |
CABA | NR | 612 | 141 | 53 | 0.074 | 0.087 | 0.367 | 0.230 | 0.039 | 0.023 |
Catamarca | F | 542 | 8 | 0 | 0.000 | 0.000 | 0.108 | 0.015 | 0.004 | 0.000 |
Mendoza | NR | 205 | 8 | 4 | 0.014 | 0.020 | 0.415 | 0.039 | 0.010 | 0.010 |
Misiones | M | 196 | 45 | 4 | 0.013 | 0.020 | 0.043 | 0.230 | 0.031 | 0.020 |
Misiones | F | 163 | 33 | 3 | 0.011 | 0.018 | 0.048 | 0.202 | 0.025 | 0.006 |
Formosa | M | 112 | 37 | 1 | 0.006 | 0.009 | 0.101 | 0.330 | 0.000 | 0.000 |
Santa Fe | NR | 58 | 6 | 3 | 0.041 | 0.052 | 0.552 | 0.103 | 0.000 | 0.000 |
Salta | NR | 57 | 5 | 3 | 0.042 | 0.053 | 0.475 | 0.088 | 0.035 | 0.018 |
Formosa | F | 48 | 30 | 1 | 0.010 | 0.021 | 0.061 | 0.625 | 0.000 | 0.000 |
Córdoba | NR | 47 | 1 | 3 | 0.036 | 0.064 | 0.653 | 0.021 | 0.000 | 0.000 |
Chubut | NR | 34 | 1 | 1 | 0.021 | 0.029 | 0.479 | 0.029 | 0.000 | 0.000 |
La Rioja | NR | 34 | 0 | 4 | 0.114 | 0.118 | 0.343 | 0.000 | 0.000 | 0.000 |
La Pampa | NR | 30 | 1 | 0 | 0.000 | 0.000 | 0.337 | 0.033 | 0.000 | 0.000 |
Tucumán | NR | 28 | 0 | 0 | 0.000 | 0.000 | 0.700 | 0.000 | 0.000 | 0.000 |
Jujuy | NR | 23 | 1 | 2 | 0.041 | 0.087 | 0.303 | 0.043 | 0.000 | 0.000 |
Río Negro | NR | 19 | 4 | 0 | 0.000 | 0.000 | 0.594 | 0.211 | 0.053 | 0.053 |
Tierra del Fuego | NR | 17 | 0 | 0 | 0.000 | 0.000 | 1.545 | 0.000 | 0.000 | 0.000 |
Neuquén | NR | 10 | 2 | 1 | 0.045 | 0.100 | 0.667 | 0.200 | 0.100 | 0.100 |
San Luis | NR | 10 | 0 | 0 | 0.000 | 0.000 | 0.455 | 0.000 | 0.000 | 0.000 |
Santa Cruz | NR | 10 | 0 | 0 | 0.000 | 0.000 | 0.833 | 0.000 | 0.000 | 0.000 |
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre", "edad.rango"))
#> Warning in max.default(structure(c(NA_real_, NA_real_, NA_real_, NA_real_, : no
#> non-missing arguments to max; returning -Inf
# Share per province
provinces.cases <-covid19.ar.summary %>%
group_by(residencia_provincia_nombre) %>%
summarise(fallecidos.total.provincia = sum(fallecidos),
confirmados.total.provincia = sum(confirmados),
.groups = "keep")
covid19.ar.summary %<>% inner_join(provinces.cases, by = "residencia_provincia_nombre")
covid19.ar.summary %<>% mutate(fallecidos.prop = fallecidos/fallecidos.total.provincia)
covid19.ar.summary %<>% mutate(confirmados.prop = confirmados/confirmados.total.provincia)
# Data 2 plot
data2plot <- covid19.ar.summary %>% filter(residencia_provincia_nombre %in%
# Proporción de confirmados por rango etario
covid19.ar.provincia.summary.100.confirmed$residencia_provincia_nombre)
covidplot <-
data2plot %>%
ggplot(aes(x = edad.rango, y = confirmados.prop, fill = edad.rango)) +
geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
labs(title = "Proporción de confirmados por rango etario\n en provincias > 100 confirmados")
covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
total.colors = length(unique(data2plot$edad.rango)),
data.provider.abv = "@msalnacion", base.size = 6)
# Proporción de muertos por rango etario
covidplot
#Plot of deaths share
covidplot <-
data2plot %>%
ggplot(aes(x = edad.rango, y = fallecidos.prop, fill = edad.rango)) +
geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
labs(title = "Proporción de muertos por rango etario\n en provincias > 100 confirmados")
covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
total.colors = length(unique(data2plot$edad.rango)),
data.provider.abv = "@msalnacion", base.size = 6)
# Proporción de muertos por rango etario
covidplot
# UCI rate
covidplot <- data2plot %>%
ggplot(aes(x = edad.rango, y = cuidado.intensivo.porc, fill = edad.rango)) +
geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
labs(title = "Porcentaje de pacientes en Unidades de Cuidados Intensivos por rango etario\n en provincias > 100 confirmados")
covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
total.colors = length(unique(data2plot$edad.rango)),
data.provider.abv = "@msalnacion", base.size = 6)
covidplot
# ventilator rate
covidplot <- data2plot %>%
ggplot(aes(x = edad.rango, y = respirador.porc, fill = edad.rango)) +
geom_bar(stat = "identity") +
facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
labs(title = "Porcentaje de pacientes que utilizaron respirador mecánico por rango etario\n en provincias > 100 confirmados")
covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
total.colors = length(unique(data2plot$edad.rango)),
data.provider.abv = "@msalnacion", base.size = 6)
covidplot
# fatality rate
covidplot <- data2plot %>%
ggplot(aes(x = edad.rango, y = letalidad.min.porc, fill = edad.rango)) +
geom_bar(stat = "identity") +
facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
labs(title = "Porcentaje de letalidad por rango etario\n en provincias > 100 confirmados")
covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
total.colors = length(unique(data2plot$edad.rango)),
data.provider.abv = "@msalnacion", base.size = 6)
covidplot
output.dir <- "~/.R/COVID19AR/"
dir.create(output.dir, showWarnings = FALSE, recursive = TRUE)
exportAggregatedTables(covid19.curator, output.dir = output.dir,
aggrupation.criteria = list(provincia_residencia = c("residencia_provincia_nombre"),
provincia_localidad_residencia = c("residencia_provincia_nombre", "residencia_departamento_nombre"),
provincia_residencia_sexo = c("residencia_provincia_nombre", "sexo"),
edad_rango_sexo = c("edad.rango", "sexo"),
provincia_residencia_edad_rango = c("residencia_provincia_nombre", "edad.rango"),
provincia_residencia_sepi_apertura = c("residencia_provincia_nombre", "sepi_apertura"),
provincia_residencia = c("residencia_provincia_nombre", "residencia_departamento_nombre", "sepi_apertura"),
provincia_residencia_fecha_apertura = c("residencia_provincia_nombre", "fecha_apertura")))
All this tables are accesible at COVID19ARdata
Citation
Alejandro Baranek, COVID19AR, 2020. URL: https://github.com/rOpenStats/COVID19AR
BibTex
@techreport{baranek2020Covid19AR,
Author = {Alejandro Baranek},
Institution = {rOpenStats},
Title = {COVID19AR: a package for analysing Argentina COVID-19 outbreak},
Url = {https://github.com/rOpenStats/COVID19AR},
Year = {2020}}