Skip to content

rOpenStats/COVID19AR2020

Repository files navigation

COVID19AR

A package for analysing COVID-19 Argentina’s outbreak

Package

Release Usage Development
minimal R version Travis
CRAN codecov
Project Status: Active – The project has reached a stable, usable state and is being actively developed.

Argentina COVID19 open data

How to get started (Development version)

Install the R package using the following commands on the R console:

# install.packages("devtools")
devtools::install_github("rOpenStats/COVID19AR")

How to use it

First add variable with your preferred configurations in ~/.Renviron. COVID19AR_data_dir is mandatory while COVID19AR_credits can be configured if you want to publish your own research.

COVID19AR_data_dir = "~/.R/COVID19AR"
COVID19AR_credits = "@youralias"
library(COVID19AR)
#> Loading required package: dplyr
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
#> Loading required package: knitr
#> Loading required package: magrittr
#> Loading required package: lgr
#> Warning: replacing previous import 'ggplot2::Layout' by 'lgr::Layout' when
#> loading 'COVID19AR'
#> Warning: replacing previous import 'readr::col_factor' by 'scales::col_factor'
#> when loading 'COVID19AR'
#> Warning: replacing previous import 'magrittr::not' by 'testthat::not' when
#> loading 'COVID19AR'
#> Warning: replacing previous import 'dplyr::matches' by 'testthat::matches' when
#> loading 'COVID19AR'
#> Warning: replacing previous import 'magrittr::equals' by 'testthat::equals' when
#> loading 'COVID19AR'
#> Warning: replacing previous import 'magrittr::is_less_than' by
#> 'testthat::is_less_than' when loading 'COVID19AR'
library(ggplot2)
#> 
#> Attaching package: 'ggplot2'
#> The following object is masked from 'package:lgr':
#> 
#>     Layout

COVID19AR datos abiertos del Ministerio de Salud de la Nación

opendata From Ministerio de Salud de la Nación Argentina

log.dir <- file.path(getEnv("data_dir"), "logs")
dir.create(log.dir, recursive = TRUE, showWarnings = FALSE)
log.file <- file.path(log.dir, "covid19ar.log")
lgr::get_logger("root")$add_appender(AppenderFile$new(log.file))
lgr::threshold("info", lgr::get_logger("root"))
lgr::threshold("info", lgr::get_logger("COVID19ARCurator"))

# Data from
# http://datos.salud.gob.ar/dataset/covid-19-casos-registrados-en-la-republica-argentina
covid19.curator <- COVID19ARCurator$new(report.date = Sys.Date() -1 , 
                                        download.new.data = FALSE)

dummy <- covid19.curator$loadData()
#> INFO  [09:16:18.046] Exists dest path? {dest.path: ~/.R/COVID19AR/Covid19Casos.csv, exists.dest.path: TRUE}
dummy <- covid19.curator$curateData()
#> INFO  [09:16:33.751] Normalize 
#> INFO  [09:16:39.024] checkSoundness 
#> INFO  [09:16:41.136] Mutating data
# Dates of current processed file
max(covid19.curator$data$fecha_apertura, na.rm = TRUE)
#> [1] "2020-11-11"
# Inicio de síntomas

max(covid19.curator$data$fecha_inicio_sintomas,  na.rm = TRUE)
#> [1] "2020-11-11"

# Ultima muerte
max(covid19.curator$data$fecha_fallecimiento,  na.rm = TRUE)
#> [1] "2020-11-11"

report.date <- max(covid19.curator$data$fecha_inicio_sintomas,  na.rm = TRUE)
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = NULL)

kable(covid19.ar.summary %>% select(max_fecha_diagnostico, confirmados, fallecidos, letalidad.min.porc, letalidad.max.porc, count_fecha_diagnostico, tests, positividad.porc))
max_fecha_diagnostico confirmados fallecidos letalidad.min.porc letalidad.max.porc count_fecha_diagnostico tests positividad.porc
2020-11-11 1273347 34531 0.023 0.027 267 2599339 0.49
covid19.ar.provincia.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre"))
covid19.ar.provincia.summary.100.confirmed <- covid19.ar.provincia.summary %>% 
  filter(confirmados >= 100) %>%
  arrange(desc(confirmados))
# Provinces with > 100 confirmed cases
kable(covid19.ar.provincia.summary.100.confirmed %>% select(residencia_provincia_nombre, confirmados, fallecidos, confirmados, fallecidos, letalidad.min.porc, letalidad.max.porc, count_fecha_diagnostico, tests, positividad.porc))
residencia_provincia_nombre confirmados fallecidos letalidad.min.porc letalidad.max.porc count_fecha_diagnostico tests positividad.porc
Buenos Aires 577838 18862 0.028 0.033 259 1222024 0.473
CABA 151000 5172 0.032 0.034 257 423290 0.357
Santa Fe 122821 1835 0.013 0.015 243 149744 0.820
Córdoba 97413 1580 0.012 0.016 249 172476 0.565
Tucumán 57081 958 0.011 0.017 238 66247 0.862
Mendoza 51879 1004 0.016 0.019 248 93235 0.556
Río Negro 27329 692 0.022 0.025 240 44119 0.619
Neuquén 25878 459 0.013 0.018 242 32942 0.786
Salta 19786 915 0.037 0.046 235 37208 0.532
Entre Ríos 18955 349 0.015 0.018 241 33156 0.572
Jujuy 18070 837 0.038 0.046 237 45000 0.402
Chubut 18047 236 0.010 0.013 228 19408 0.930
Chaco 15511 472 0.022 0.030 245 66230 0.234
Tierra del Fuego 13662 171 0.012 0.013 239 20325 0.672
Santiago del Estero 11910 146 0.010 0.012 229 39414 0.302
Santa Cruz 11777 183 0.012 0.016 234 18448 0.638
San Luis 10180 123 0.008 0.012 224 28773 0.354
La Rioja 7955 294 0.034 0.037 232 21573 0.369
La Pampa 4380 46 0.009 0.011 223 17569 0.249
San Juan 4114 102 0.016 0.025 230 4712 0.873
Corrientes 3244 58 0.012 0.018 238 15056 0.215
SIN ESPECIFICAR 2697 26 0.008 0.010 234 6444 0.419
Catamarca 1301 2 0.001 0.002 218 12126 0.107
Misiones 359 7 0.012 0.019 217 7915 0.045
Formosa 160 2 0.008 0.013 213 1905 0.084
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre"))
nrow(covid19.ar.summary)
#> [1] 25
porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))]
kable((covid19.ar.summary %>% filter(confirmados > 0) %>% arrange(desc(confirmados))) %>% 
        select_at(c("residencia_provincia_nombre", "confirmados", "tests", "fallecidos", "dias.fallecimiento",porc.cols)))
residencia_provincia_nombre confirmados tests fallecidos dias.fallecimiento letalidad.min.porc letalidad.max.porc positividad.porc internados.porc cuidado.intensivo.porc respirador.porc
Buenos Aires 577838 1222024 18862 16.9 0.028 0.033 0.473 0.064 0.010 0.005
CABA 151000 423290 5172 17.2 0.032 0.034 0.357 0.143 0.018 0.009
Santa Fe 122821 149744 1835 13.1 0.013 0.015 0.820 0.025 0.007 0.004
Córdoba 97413 172476 1580 13.1 0.012 0.016 0.565 0.020 0.009 0.003
Tucumán 57081 66247 958 11.6 0.011 0.017 0.862 0.007 0.002 0.001
Mendoza 51879 93235 1004 12.4 0.016 0.019 0.556 0.061 0.007 0.004
Río Negro 27329 44119 692 15.2 0.022 0.025 0.619 0.141 0.006 0.004
Neuquén 25878 32942 459 18.0 0.013 0.018 0.786 0.346 0.009 0.007
Salta 19786 37208 915 14.2 0.037 0.046 0.532 0.105 0.020 0.011
Entre Ríos 18955 33156 349 15.4 0.015 0.018 0.572 0.067 0.007 0.003
Jujuy 18070 45000 837 19.0 0.038 0.046 0.402 0.023 0.010 0.006
Chubut 18047 19408 236 11.2 0.010 0.013 0.930 0.010 0.003 0.002
Chaco 15511 66230 472 14.4 0.022 0.030 0.234 0.077 0.040 0.019
Tierra del Fuego 13662 20325 171 15.0 0.012 0.013 0.672 0.017 0.006 0.005
Santiago del Estero 11910 39414 146 11.1 0.010 0.012 0.302 0.013 0.002 0.001
Santa Cruz 11777 18448 183 15.5 0.012 0.016 0.638 0.056 0.012 0.009
San Luis 10180 28773 123 12.7 0.008 0.012 0.354 0.023 0.006 0.005
La Rioja 7955 21573 294 16.9 0.034 0.037 0.369 0.007 0.002 0.001
La Pampa 4380 17569 46 14.5 0.009 0.011 0.249 0.021 0.005 0.002
San Juan 4114 4712 102 10.7 0.016 0.025 0.873 0.024 0.010 0.003
Corrientes 3244 15056 58 10.2 0.012 0.018 0.215 0.024 0.016 0.011
SIN ESPECIFICAR 2697 6444 26 23.1 0.008 0.010 0.419 0.064 0.008 0.004
Catamarca 1301 12126 2 16.0 0.001 0.002 0.107 0.013 0.002 0.000
Misiones 359 7915 7 9.5 0.012 0.019 0.045 0.217 0.028 0.014
Formosa 160 1905 2 12.0 0.008 0.013 0.084 0.419 0.000 0.000
rg <- ReportGeneratorCOVID19AR$new(covid19ar.curator = covid19.curator)
rg$preprocess()
#> 
#> ── Column specification ────────────────────────────────────────────────────────
#> cols(
#>   .default = col_double(),
#>   residencia_provincia_nombre = col_character(),
#>   residencia_departamento_nombre = col_character(),
#>   fecha_apertura = col_date(format = ""),
#>   max_fecha_diagnostico = col_date(format = ""),
#>   max_fecha_inicio_sintomas = col_date(format = ""),
#>   confirmados.inc = col_logical(),
#>   confirmados.rate = col_logical(),
#>   fallecidos.inc = col_logical(),
#>   tests.inc = col_logical(),
#>   tests.rate = col_logical(),
#>   sospechosos.inc = col_logical()
#> )
#> ℹ Use `spec()` for the full column specifications.
rg$getDepartamentosExponentialGrowthPlot()
#> Scale for 'y' is already present. Adding another scale for 'y', which will
#> replace the existing scale.

rg$getDepartamentosCrossSectionConfirmedPostivityPlot()

covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("sepi_apertura"))
#> INFO  [09:25:18.568] Processing {current.group: }
nrow(covid19.ar.summary)
#> [1] 37
porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))]
kable(covid19.ar.summary %>% 
        filter(confirmados > 0) %>% 
        arrange(sepi_apertura, desc(confirmados)) %>% 
        select_at(c("sepi_apertura", "max_fecha_diagnostico", "count_fecha_diagnostico", "confirmados", "tests", "internados", "fallecidos",  porc.cols)))
sepi_apertura max_fecha_diagnostico count_fecha_diagnostico confirmados tests internados fallecidos letalidad.min.porc letalidad.max.porc positividad.porc internados.porc cuidado.intensivo.porc respirador.porc
10 2020-11-03 22 16 87 9 1 0.053 0.062 0.184 0.562 0.125 0.125
11 2020-11-03 48 103 671 69 9 0.069 0.087 0.154 0.670 0.117 0.058
12 2020-11-03 84 430 2059 265 17 0.034 0.040 0.209 0.616 0.088 0.051
13 2020-11-07 141 1140 5539 625 66 0.051 0.058 0.206 0.548 0.090 0.054
14 2020-11-07 195 1894 11580 1024 121 0.056 0.064 0.164 0.541 0.090 0.053
15 2020-11-10 232 2663 20319 1401 190 0.062 0.071 0.131 0.526 0.084 0.047
16 2020-11-11 251 3620 31956 1791 258 0.061 0.071 0.113 0.495 0.074 0.040
17 2020-11-11 256 4910 46042 2361 385 0.068 0.078 0.107 0.481 0.067 0.035
18 2020-11-11 256 6069 59270 2804 494 0.071 0.081 0.102 0.462 0.060 0.031
19 2020-11-11 257 7711 73440 3442 609 0.070 0.079 0.105 0.446 0.056 0.029
20 2020-11-11 258 10292 90917 4341 736 0.064 0.072 0.113 0.422 0.052 0.027
21 2020-11-11 258 14981 114448 5748 954 0.057 0.064 0.131 0.384 0.047 0.023
22 2020-11-11 258 20511 139964 7284 1227 0.054 0.060 0.147 0.355 0.043 0.021
23 2020-11-11 258 27338 168361 8903 1561 0.052 0.057 0.162 0.326 0.040 0.019
24 2020-11-11 259 37402 203669 11150 1992 0.048 0.053 0.184 0.298 0.036 0.017
25 2020-11-11 259 50658 245314 13637 2557 0.046 0.050 0.207 0.269 0.031 0.014
26 2020-11-11 259 69073 297885 16869 3328 0.044 0.048 0.232 0.244 0.028 0.013
27 2020-11-11 259 88435 349534 19806 4178 0.043 0.047 0.253 0.224 0.026 0.011
28 2020-11-11 260 112533 409145 23284 5290 0.042 0.047 0.275 0.207 0.024 0.011
29 2020-11-11 262 142354 481908 27103 6619 0.042 0.046 0.295 0.190 0.023 0.010
30 2020-11-11 262 181015 568816 30965 8115 0.040 0.045 0.318 0.171 0.021 0.010
31 2020-11-11 262 221415 660050 34409 9531 0.039 0.043 0.335 0.155 0.019 0.009
32 2020-11-11 262 271709 769564 38405 11257 0.037 0.041 0.353 0.141 0.018 0.008
33 2020-11-11 262 319515 884864 42279 12858 0.036 0.040 0.361 0.132 0.017 0.008
34 2020-11-11 262 369247 996669 46184 14660 0.035 0.040 0.370 0.125 0.016 0.008
35 2020-11-11 262 435262 1133509 50911 16775 0.034 0.039 0.384 0.117 0.016 0.007
36 2020-11-11 262 505848 1276668 55401 18984 0.033 0.038 0.396 0.110 0.015 0.007
37 2020-11-11 262 581896 1430449 60184 21259 0.033 0.037 0.407 0.103 0.014 0.007
38 2020-11-11 262 656077 1575809 64553 23394 0.032 0.036 0.416 0.098 0.014 0.007
39 2020-11-11 263 734813 1717120 69087 25572 0.031 0.035 0.428 0.094 0.013 0.007
40 2020-11-11 265 820362 1857306 73365 27706 0.030 0.034 0.442 0.089 0.013 0.006
41 2020-11-11 266 911659 1997663 77543 29819 0.029 0.033 0.456 0.085 0.012 0.006
42 2020-11-11 266 1006567 2131484 81102 31734 0.028 0.032 0.472 0.081 0.012 0.006
43 2020-11-11 266 1101223 2269990 83748 33166 0.026 0.030 0.485 0.076 0.011 0.006
44 2020-11-11 267 1179513 2394707 85679 34088 0.025 0.029 0.493 0.073 0.011 0.005
45 2020-11-11 267 1245616 2527240 86929 34476 0.024 0.028 0.493 0.070 0.010 0.005
46 2020-11-11 267 1273347 2599339 87260 34531 0.023 0.027 0.490 0.069 0.010 0.005
```r
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre", "sepi_apertura"))
#> INFO  [09:30:43.778] Processing {current.group: residencia_provincia_nombre = Buenos Aires}
#> INFO  [09:33:36.621] Processing {current.group: residencia_provincia_nombre = CABA}
#> INFO  [09:35:04.643] Processing {current.group: residencia_provincia_nombre = Catamarca}
#> INFO  [09:35:09.849] Processing {current.group: residencia_provincia_nombre = Chaco}
#> INFO  [09:35:23.570] Processing {current.group: residencia_provincia_nombre = Chubut}
#> INFO  [09:35:30.657] Processing {current.group: residencia_provincia_nombre = Córdoba}
#> INFO  [09:35:58.139] Processing {current.group: residencia_provincia_nombre = Corrientes}
#> INFO  [09:36:06.147] Processing {current.group: residencia_provincia_nombre = Entre Ríos}
#> INFO  [09:36:16.205] Processing {current.group: residencia_provincia_nombre = Formosa}
#> INFO  [09:36:21.339] Processing {current.group: residencia_provincia_nombre = Jujuy}
#> INFO  [09:36:31.495] Processing {current.group: residencia_provincia_nombre = La Pampa}
#> INFO  [09:36:36.401] Processing {current.group: residencia_provincia_nombre = La Rioja}
#> INFO  [09:36:43.305] Processing {current.group: residencia_provincia_nombre = Mendoza}
#> INFO  [09:36:56.125] Processing {current.group: residencia_provincia_nombre = Misiones}
#> INFO  [09:37:01.038] Processing {current.group: residencia_provincia_nombre = Neuquén}
#> INFO  [09:37:09.288] Processing {current.group: residencia_provincia_nombre = Río Negro}
#> INFO  [09:37:18.764] Processing {current.group: residencia_provincia_nombre = Salta}
#> INFO  [09:37:26.661] Processing {current.group: residencia_provincia_nombre = San Juan}
#> INFO  [09:37:30.934] Processing {current.group: residencia_provincia_nombre = San Luis}
#> INFO  [09:37:36.372] Processing {current.group: residencia_provincia_nombre = Santa Cruz}
#> INFO  [09:37:41.907] Processing {current.group: residencia_provincia_nombre = Santa Fe}
#> INFO  [09:38:03.763] Processing {current.group: residencia_provincia_nombre = Santiago del Estero}
#> INFO  [09:38:11.776] Processing {current.group: residencia_provincia_nombre = SIN ESPECIFICAR}
#> INFO  [09:38:17.153] Processing {current.group: residencia_provincia_nombre = Tierra del Fuego}
#> INFO  [09:38:23.531] Processing {current.group: residencia_provincia_nombre = Tucumán}
nrow(covid19.ar.summary)
#> [1] 868
porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))]
sepi.fechas <- covid19.curator$data %>% 
  group_by(sepi_apertura) %>% 
  summarize(ultima_fecha_sepi = max(fecha_apertura), .groups = "keep")


data2plot <- covid19.ar.summary %>%
                filter(residencia_provincia_nombre %in% covid19.ar.provincia.summary.100.confirmed$residencia_provincia_nombre) %>%
                filter(confirmados > 0 ) %>%
                filter(positividad.porc <=0.6 | confirmados >= 20)

                
data2plot %<>% inner_join(sepi.fechas, by = "sepi_apertura")
dates <- sort(unique(data2plot$ultima_fecha_sepi))

covplot <- data2plot %>%
 ggplot(aes(x = ultima_fecha_sepi, y = confirmados, color = "confirmados")) +
 geom_line() +
 facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
 labs(title = "Evolución de casos confirmados y tests\n en provincias > 100 confirmados")
covplot <- covplot +
 geom_line(aes(x = ultima_fecha_sepi, y = tests, color = "tests")) +
 facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y")
covplot <- setupTheme(covplot, report.date = report.date, x.values = dates, x.type = "dates",
                     total.colors = 2,
                     data.provider.abv = "@msalnacion", base.size = 6)
covplot <- covplot + scale_y_log10()
#> Scale for 'y' is already present. Adding another scale for 'y', which will
#> replace the existing scale.
covplot

covplot <- data2plot %>%
 ggplot(aes(x = ultima_fecha_sepi, y = positividad.porc, color = "positividad.porc")) +
 geom_line() +
 facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
 labs(title = "Porcentajes de positividad, uso de UCI, respirador y letalidad\n en provincias > 100 confirmados")
covplot <- covplot +
 geom_line(aes(x = ultima_fecha_sepi, y = cuidado.intensivo.porc, color = "cuidado.intensivo.porc")) +
 facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y")
covplot <- covplot  +
 geom_line(aes(x = ultima_fecha_sepi, y = respirador.porc, color = "respirador.porc"))+
 facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y")
covplot <- covplot +
 geom_line(aes(x = ultima_fecha_sepi, y = letalidad.min.porc, color = "letalidad.min.porc")) +
 facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y")

covplot <- setupTheme(covplot, report.date = report.date, x.values = dates, x.type = "dates",
                     total.colors = 4,
                     data.provider.abv = "@msalnacion", base.size = 6)
covplot

covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre", "sexo"))
#> Warning in max.default(structure(c(NA_real_, NA_real_, NA_real_, NA_real_, : no
#> non-missing arguments to max; returning -Inf
nrow(covid19.ar.summary)
#> [1] 71
porc.cols <- names(covid19.ar.summary)[grep("porc", names(covid19.ar.summary))]
kable((covid19.ar.summary %>% filter(confirmados >= 10) %>% arrange(desc(confirmados))) %>% select_at(c("residencia_provincia_nombre", "sexo", "confirmados", "internados", "fallecidos",  porc.cols)))
residencia_provincia_nombre sexo confirmados internados fallecidos letalidad.min.porc letalidad.max.porc positividad.porc internados.porc cuidado.intensivo.porc respirador.porc
Buenos Aires M 291985 20373 10453 0.031 0.036 0.486 0.070 0.012 0.006
Buenos Aires F 283847 16692 8286 0.025 0.029 0.460 0.059 0.008 0.003
CABA F 76190 10317 2414 0.029 0.032 0.336 0.135 0.013 0.006
CABA M 74198 11112 2705 0.034 0.036 0.381 0.150 0.022 0.012
Santa Fe F 62802 1344 810 0.012 0.013 0.811 0.021 0.005 0.003
Santa Fe M 59961 1684 1022 0.015 0.017 0.831 0.028 0.009 0.005
Córdoba F 49834 916 659 0.010 0.013 0.560 0.018 0.007 0.002
Córdoba M 47532 1048 918 0.015 0.019 0.570 0.022 0.010 0.003
Tucumán M 29087 245 599 0.013 0.021 0.815 0.008 0.002 0.001
Tucumán F 27966 174 359 0.008 0.013 0.916 0.006 0.001 0.001
Mendoza F 26064 1408 392 0.012 0.015 0.544 0.054 0.004 0.002
Mendoza M 25610 1730 608 0.019 0.024 0.571 0.068 0.010 0.006
Río Negro F 14126 1943 281 0.018 0.020 0.603 0.138 0.005 0.003
Río Negro M 13184 1914 411 0.028 0.031 0.638 0.145 0.008 0.006
Neuquén F 13016 4513 170 0.010 0.013 0.775 0.347 0.006 0.004
Neuquén M 12852 4449 288 0.017 0.022 0.796 0.346 0.012 0.010
Salta M 10934 1238 609 0.045 0.056 0.539 0.113 0.024 0.014
Jujuy M 10057 276 545 0.044 0.054 0.407 0.027 0.013 0.009
Chubut M 9653 104 131 0.011 0.014 0.922 0.011 0.004 0.003
Entre Ríos F 9563 601 129 0.011 0.013 0.551 0.063 0.005 0.002
Entre Ríos M 9383 661 217 0.019 0.023 0.595 0.070 0.009 0.003
Salta F 8795 835 303 0.027 0.034 0.524 0.095 0.015 0.007
Chubut F 8360 83 104 0.010 0.012 0.942 0.010 0.003 0.002
Jujuy F 7990 138 290 0.030 0.036 0.395 0.017 0.006 0.004
Chaco M 7752 634 300 0.028 0.039 0.240 0.082 0.047 0.023
Chaco F 7751 557 172 0.016 0.022 0.229 0.072 0.034 0.015
Tierra del Fuego M 7003 161 122 0.016 0.017 0.686 0.023 0.008 0.007
Tierra del Fuego F 6642 76 49 0.007 0.007 0.657 0.011 0.003 0.002
Santiago del Estero M 6326 101 91 0.012 0.014 0.290 0.016 0.002 0.001
Santa Cruz M 6143 375 120 0.015 0.020 0.675 0.061 0.017 0.012
Santa Cruz F 5624 279 63 0.009 0.011 0.602 0.050 0.008 0.006
Santiago del Estero F 5577 59 55 0.008 0.010 0.329 0.011 0.001 0.001
San Luis M 5214 141 79 0.010 0.015 0.364 0.027 0.008 0.006
San Luis F 4956 97 44 0.006 0.009 0.344 0.020 0.003 0.003
La Rioja M 4124 29 187 0.041 0.045 0.375 0.007 0.002 0.000
La Rioja F 3797 24 103 0.025 0.027 0.362 0.006 0.002 0.001
La Pampa F 2296 46 21 0.008 0.009 0.239 0.020 0.004 0.001
San Juan M 2250 48 56 0.016 0.025 0.858 0.021 0.010 0.004
La Pampa M 2054 43 25 0.011 0.012 0.261 0.021 0.007 0.002
Buenos Aires NR 2006 159 123 0.045 0.061 0.480 0.079 0.017 0.007
San Juan F 1859 49 46 0.015 0.025 0.892 0.026 0.011 0.002
Corrientes M 1686 54 41 0.016 0.024 0.210 0.032 0.023 0.015
SIN ESPECIFICAR F 1601 91 11 0.006 0.007 0.412 0.057 0.006 0.002
Corrientes F 1558 23 17 0.007 0.011 0.222 0.015 0.010 0.006
SIN ESPECIFICAR M 1089 79 14 0.011 0.013 0.430 0.073 0.009 0.006
Catamarca M 759 9 2 0.002 0.003 0.107 0.012 0.000 0.000
CABA NR 612 141 53 0.074 0.087 0.367 0.230 0.039 0.023
Catamarca F 542 8 0 0.000 0.000 0.108 0.015 0.004 0.000
Mendoza NR 205 8 4 0.014 0.020 0.415 0.039 0.010 0.010
Misiones M 196 45 4 0.013 0.020 0.043 0.230 0.031 0.020
Misiones F 163 33 3 0.011 0.018 0.048 0.202 0.025 0.006
Formosa M 112 37 1 0.006 0.009 0.101 0.330 0.000 0.000
Santa Fe NR 58 6 3 0.041 0.052 0.552 0.103 0.000 0.000
Salta NR 57 5 3 0.042 0.053 0.475 0.088 0.035 0.018
Formosa F 48 30 1 0.010 0.021 0.061 0.625 0.000 0.000
Córdoba NR 47 1 3 0.036 0.064 0.653 0.021 0.000 0.000
Chubut NR 34 1 1 0.021 0.029 0.479 0.029 0.000 0.000
La Rioja NR 34 0 4 0.114 0.118 0.343 0.000 0.000 0.000
La Pampa NR 30 1 0 0.000 0.000 0.337 0.033 0.000 0.000
Tucumán NR 28 0 0 0.000 0.000 0.700 0.000 0.000 0.000
Jujuy NR 23 1 2 0.041 0.087 0.303 0.043 0.000 0.000
Río Negro NR 19 4 0 0.000 0.000 0.594 0.211 0.053 0.053
Tierra del Fuego NR 17 0 0 0.000 0.000 1.545 0.000 0.000 0.000
Neuquén NR 10 2 1 0.045 0.100 0.667 0.200 0.100 0.100
San Luis NR 10 0 0 0.000 0.000 0.455 0.000 0.000 0.000
Santa Cruz NR 10 0 0 0.000 0.000 0.833 0.000 0.000 0.000
covid19.ar.summary <- covid19.curator$makeSummary(group.vars = c("residencia_provincia_nombre", "edad.rango"))
#> Warning in max.default(structure(c(NA_real_, NA_real_, NA_real_, NA_real_, : no
#> non-missing arguments to max; returning -Inf

 # Share per province
  provinces.cases <-covid19.ar.summary %>%
    group_by(residencia_provincia_nombre) %>%
    summarise(fallecidos.total.provincia = sum(fallecidos),
              confirmados.total.provincia = sum(confirmados),
              .groups = "keep")
 covid19.ar.summary %<>% inner_join(provinces.cases, by = "residencia_provincia_nombre")
 covid19.ar.summary %<>% mutate(fallecidos.prop = fallecidos/fallecidos.total.provincia)
 covid19.ar.summary %<>% mutate(confirmados.prop = confirmados/confirmados.total.provincia)

 # Data 2 plot
 data2plot <- covid19.ar.summary %>% filter(residencia_provincia_nombre %in%
 # Proporción de confirmados por rango etario
 covid19.ar.provincia.summary.100.confirmed$residencia_provincia_nombre)

 
 covidplot <-
   data2plot %>%
   ggplot(aes(x = edad.rango, y = confirmados.prop, fill = edad.rango)) +
   geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
   labs(title = "Proporción de confirmados por rango etario\n en provincias > 100 confirmados")

 covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
                         total.colors = length(unique(data2plot$edad.rango)),
                         data.provider.abv = "@msalnacion", base.size = 6)
 # Proporción de muertos por rango etario
 covidplot

 #Plot of deaths share
 covidplot <-
    data2plot %>%
    ggplot(aes(x = edad.rango, y = fallecidos.prop, fill = edad.rango)) +
    geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
    labs(title = "Proporción de muertos por rango etario\n en provincias > 100 confirmados")
 covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
                      total.colors = length(unique(data2plot$edad.rango)),
                      data.provider.abv = "@msalnacion", base.size = 6)
 # Proporción de muertos por rango etario
 covidplot

 # UCI rate
 covidplot <- data2plot %>%
   ggplot(aes(x = edad.rango, y = cuidado.intensivo.porc, fill = edad.rango)) +
   geom_bar(stat = "identity") + facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
    labs(title = "Porcentaje de pacientes en Unidades de Cuidados Intensivos por rango etario\n en provincias > 100 confirmados")
 covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
                      total.colors = length(unique(data2plot$edad.rango)),
                      data.provider.abv = "@msalnacion", base.size = 6)
 covidplot

 # ventilator rate
 covidplot <- data2plot %>%
   ggplot(aes(x = edad.rango, y = respirador.porc, fill = edad.rango)) +
   geom_bar(stat = "identity") +
   facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
   labs(title = "Porcentaje de pacientes que utilizaron respirador mecánico por rango etario\n en provincias > 100 confirmados")
 covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
                      total.colors = length(unique(data2plot$edad.rango)),
                      data.provider.abv = "@msalnacion", base.size = 6)
 covidplot

 # fatality rate

 covidplot <- data2plot %>%
  ggplot(aes(x = edad.rango, y = letalidad.min.porc, fill = edad.rango)) +
  geom_bar(stat = "identity") +
  facet_wrap(~residencia_provincia_nombre, ncol = 2, scales = "free_y") +
  labs(title = "Porcentaje de letalidad por rango etario\n en provincias > 100 confirmados")
 covidplot <- setupTheme(covidplot, report.date = report.date, x.values = NULL, x.type = NULL,
                      total.colors = length(unique(data2plot$edad.rango)),
                      data.provider.abv = "@msalnacion", base.size = 6)
 covidplot

Generar diferentes agregaciones y guardar csv / Generate different aggregations

output.dir <- "~/.R/COVID19AR/"
dir.create(output.dir, showWarnings = FALSE, recursive = TRUE)
exportAggregatedTables(covid19.curator, output.dir = output.dir,
                       aggrupation.criteria = list(provincia_residencia = c("residencia_provincia_nombre"),
                                                   provincia_localidad_residencia = c("residencia_provincia_nombre", "residencia_departamento_nombre"),
                                                   provincia_residencia_sexo = c("residencia_provincia_nombre", "sexo"),
                                                   edad_rango_sexo = c("edad.rango", "sexo"),
                                                   provincia_residencia_edad_rango = c("residencia_provincia_nombre", "edad.rango"),
                                                   provincia_residencia_sepi_apertura = c("residencia_provincia_nombre", "sepi_apertura"),
                                                   provincia_residencia = c("residencia_provincia_nombre", "residencia_departamento_nombre", "sepi_apertura"),
                                                   provincia_residencia_fecha_apertura = c("residencia_provincia_nombre", "fecha_apertura")))
                                                   
                                                  

All this tables are accesible at COVID19ARdata

How to Cite This Work

Citation

Alejandro Baranek, COVID19AR, 2020. URL: https://github.com/rOpenStats/COVID19AR
BibTex
@techreport{baranek2020Covid19AR,
Author = {Alejandro Baranek},
Institution = {rOpenStats},
Title = {COVID19AR: a package for analysing Argentina COVID-19 outbreak},
Url = {https://github.com/rOpenStats/COVID19AR},
Year = {2020}}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published