Skip to content

Commit

Permalink
Add torchao quant for mixtral and qwen_moe (sgl-project#1418)
Browse files Browse the repository at this point in the history
  • Loading branch information
jerryzh168 authored and qeternity committed Sep 14, 2024
1 parent 8f61f61 commit dc348ff
Show file tree
Hide file tree
Showing 4 changed files with 50 additions and 20 deletions.
39 changes: 38 additions & 1 deletion python/sglang/srt/layers/torchao_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,20 @@
Common utilities for torchao.
"""

from typing import Dict, Set

import torch


def torchao_quantize_param_data(param, torchao_config):
def torchao_quantize_param_data(param: torch.Tensor, torchao_config: str):
"""Quantize a Tensor with torchao quantization specified by torchao_config
Args:
`param`: weight parameter of the linear module
`torchao_config`: type of quantization and their arguments we want to use to
quantize the Tensor, e.g. int4wo-128 means int4 weight only quantization with group_size
128
"""
# Lazy import to suppress some warnings
from torchao.quantization import (
int4_weight_only,
Expand Down Expand Up @@ -36,3 +46,30 @@ def torchao_quantize_param_data(param, torchao_config):
# [rank0]: AssertionError: fp8e4nv data type is not supported on CUDA arch < 89
quantize_(dummy_linear, float8_weight_only())
return dummy_linear.weight


def apply_torchao_config_(
self: torch.nn.Module,
params_dict: Dict[str, torch.Tensor],
param_suffixes: Set[str],
) -> None:
"""A util function used for quantizing the weight parameters after they are loaded if
self.torchao_config is specified
Args:
`self`: the model we want to quantize
`params_dict`: dictionary mapping from param_name to the parameter Tensor
`param_suffixes`: a set of suffixes, we'll quantize the Tensor matching these suffixes
Returns:
None, the `params_dict` is modified inplace and the weights of `self` model are quantized
"""
if self.torchao_config:
for param_suffix in param_suffixes:
for name in params_dict:
param = params_dict[name]
if param_suffix in name and param.ndim == 2:
params_dict[name] = torchao_quantize_param_data(
param, self.torchao_config
)
self.load_state_dict(params_dict, assign=True)
21 changes: 2 additions & 19 deletions python/sglang/srt/models/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.torchao_utils import torchao_quantize_param_data
from sglang.srt.layers.torchao_utils import apply_torchao_config_
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import InputMetadata

Expand Down Expand Up @@ -405,24 +405,7 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)

if self.torchao_config:
if name.endswith("proj.weight") and param.ndim == 2:
params_dict[name] = torchao_quantize_param_data(
param, self.torchao_config
)

if self.torchao_config:
# quantizing the loaded, stacked params, e.g. "...qkv_proj"
stacked_params = set(entry[0] for entry in stacked_params_mapping)
for param_suffix in stacked_params:
for name in params_dict:
if param_suffix in name:
param = params_dict[name]
params_dict[name] = torchao_quantize_param_data(
param, self.torchao_config
)

self.load_state_dict(params_dict, assign=True)
apply_torchao_config_(self, params_dict, set(["proj.weight"]))


class Phi3ForCausalLM(LlamaForCausalLM):
Expand Down
5 changes: 5 additions & 0 deletions python/sglang/srt/models/mixtral.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,8 @@
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.torchao_utils import apply_torchao_config_
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import InputMetadata


Expand Down Expand Up @@ -296,6 +298,7 @@ def __init__(
super().__init__()
self.config = config
self.quant_config = quant_config
self.torchao_config = global_server_args_dict["torchao_config"]
self.model = MixtralModel(config, quant_config=quant_config, prefix="model")
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.logits_processor = LogitsProcessor(config)
Expand Down Expand Up @@ -376,5 +379,7 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
)
weight_loader(param, loaded_weight)

apply_torchao_config_(self, params_dict, set(["proj.weight"]))


EntryClass = MixtralForCausalLM
5 changes: 5 additions & 0 deletions python/sglang/srt/models/qwen2_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,8 @@
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.torchao_utils import apply_torchao_config_
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import InputMetadata


Expand Down Expand Up @@ -359,6 +361,7 @@ def __init__(
super().__init__()
self.config = config
self.quant_config = quant_config
self.torchao_config = global_server_args_dict["torchao_config"]
self.model = Qwen2MoeModel(config, cache_config, quant_config)
self.lm_head = ParallelLMHead(
config.vocab_size, config.hidden_size, quant_config=quant_config
Expand Down Expand Up @@ -451,5 +454,7 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
)
weight_loader(param, loaded_weight)

apply_torchao_config_(self, params_dict, set(["proj.weight"]))


EntryClass = Qwen2MoeForCausalLM

0 comments on commit dc348ff

Please sign in to comment.