Go client for the Qdrant vector search engine.
Go client library with handy utilities for interfacing with Qdrant.
go get -u github.com/qdrant/go-client
- Usage examples are available throughout the Qdrant documentation and API Reference.
- Godoc Reference
A client can be instantiated with
import "github.com/qdrant/go-client/qdrant"
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
Which creates a client that will connect to Qdrant on http://localhost:6334.
Internally, the high-level client uses a low-level gRPC client to interact with
Qdrant. qdrant.Config
provides additional options to control how the gRPC
client is configured. The following example configures API key authentication with TLS:
import "github.com/qdrant/go-client/qdrant"
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.eu-central.aws.cloud.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true, // uses default config with minimum TLS version set to 1.3
// TLSConfig: &tls.Config{...},
// GrpcOptions: []grpc.DialOption{},
})
Once a client has been created, create a new collection
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client.CreateCollection(context.Background(), &qdrant.CreateCollection{
CollectionName: "{collection_name}",
VectorsConfig: qdrant.NewVectorsConfig(&qdrant.VectorParams{
Size: 4,
Distance: qdrant.Distance_Cosine,
}),
})
Insert vectors into the collection
operationInfo, err := client.Upsert(context.Background(), &qdrant.UpsertPoints{
CollectionName: "{collection_name}",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(1),
Vectors: qdrant.NewVectors(0.05, 0.61, 0.76, 0.74),
Payload: qdrant.NewValueMap(map[string]any{"city": "London"}),
},
{
Id: qdrant.NewIDNum(2),
Vectors: qdrant.NewVectors(0.19, 0.81, 0.75, 0.11),
Payload: qdrant.NewValueMap(map[string]any{"age": 32}),
},
{
Id: qdrant.NewIDNum(3),
Vectors: qdrant.NewVectors(0.36, 0.55, 0.47, 0.94),
Payload: qdrant.NewValueMap(map[string]any{"vegan": true}),
},
},
})
Search for similar vectors
searchResult, err := client.Query(context.Background(), &qdrant.QueryPoints{
CollectionName: "{collection_name}",
Query: qdrant.NewQuery(0.2, 0.1, 0.9, 0.7),
})
Search for similar vectors with filtering condition
searchResult, err := client.Query(context.Background(), &qdrant.QueryPoints{
CollectionName: "test_collection",
Query: qdrant.NewQuery(0.2, 0.1, 0.9, 0.7),
Filter: &qdrant.Filter{
Must: []*qdrant.Condition{
qdrant.NewMatch("city", "London"),
},
},
WithPayload: qdrant.NewWithPayload(true),
})
Apache 2.0 © 2024