Skip to content

qcscine/autocas

Repository files navigation

SCINE - AutoCAS

SCINE AutoCAS

Introduction

SCINE autoCAS automates the crucial active-orbital-space selection step in multi-configurational calculations. Based on orbital entanglement measures derived from an approximate DMRG wave function, it identifies all strongly correlated orbitals to be included in the active space of a final, converged calculation. All steps can be carried out in a fully automated fashion.

Installation and Usage

Please see the documentation (available online at scine.ethz.ch) or in the folder docs.

License and Copyright Information

AutoCAS is distributed under the BSD 3-clause "New" or "Revised" License. For more license and copyright information, see the file LICENSE.txt in the repository.

How to Cite

When publishing results obtained with the autoCAS program, please cite the corresponding release as archived on Zenodo (please use the DOI of the respective release) and the following publications:

  • Primary reference: C. J. Stein and M. Reiher, "autoCAS: A Program for Fully Automated Multiconfigurational Calculations", J. Comput. Chem., 2019, 40, 2216-2226.
  • Original presentation of the approach: C. J. Stein and M. Reiher, "Automated Selection of Active Orbital Spaces”", J. Chem. Theory Comput., 2016, 12, 1760.
  • Automated active space selection with multi-reference perturbation theory: C. J. Stein, V. von Burg and M. Reiher, "The Delicate Balance of Static and Dynamic Electron Correlation", J. Chem. Theory Comput., 2016, 12, 3764.
  • Multi-configurational diagnostic: C. J. Stein and M. Reiher, "Measuring Multi-Configurational Character by Orbital Entanglement", Mol. Phys., 2017, 115, 2110.
  • Excited states and reaction paths: C. J. Stein and M. Reiher, "Automated Identification of Relevant Frontier Orbitals for Chemical Compounds and Processes", Chimia, 2017, 71, 170.
  • Consistent active orbital spaces along reaction paths: M. Bensberg and M. Reiher, "Corresponding Active Orbital Spaces along Chemical Reaction Paths", J. Phys. Chem. Lett., 2023, 14, 2112.
  • SCINE framework: T. Weymuth, J. P. Unsleber, P. L. Türtscher, M. Steiner, J.-G. Sobez, C. H. Müller, M. Mörchen, V. Klasovita, S. A. Grimmel, M. Eckhoff, K.-S. Csizi, F. Bosia, M. Bensberg, M. Reiher, "SCINE—Software for chemical interaction networks", J. Chem. Phys., 2024, 160, 222501 (DOI 10.1063/5.0206974).

Support and Contact

In case you should encounter problems or bugs, please write a short message to [email protected].