Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add functions to emit custom call to place a buffer to host and device. #8350

Merged
merged 2 commits into from
Nov 4, 2024

Conversation

qihqi
Copy link
Collaborator

@qihqi qihqi commented Nov 1, 2024

This is used for host-offloading.

example code of what jax emits:

def policy(prim, *avals, **params) -> Offloadable:
  return Offloadable(src='device', dst='pinned_host')

@functools.partial(jax.remat, policy=policy)
def f(x):
  x = jnp.sin(x)
  x = jnp.sin(x)
  return jnp.sum(x)

becomes:

module @jit_f attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} {
  func.func public @main(%arg0: tensor<16xf32> {mhlo.layout_mode = "default"}) -> (tensor<16xf32> {jax.result_info = "", mhlo.layout_mode = "default"}) {
    %0 = stablehlo.sine %arg0 : tensor<16xf32>
    %1 = stablehlo.cosine %arg0 : tensor<16xf32>
    %2 = stablehlo.custom_call @annotate_device_placement(%1) {has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "pinned_host"}} : (tensor<16xf32>) -> tensor<16xf32>
    %3 = stablehlo.cosine %0 : tensor<16xf32>
    %4 = stablehlo.custom_call @annotate_device_placement(%3) {has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "pinned_host"}} : (tensor<16xf32>) -> tensor<16xf32>
    %cst = stablehlo.constant dense<1.000000e+00> : tensor<f32>
    %5:3 = stablehlo.optimization_barrier %2, %4, %cst : tensor<16xf32>, tensor<16xf32>, tensor<f32>
    %6 = stablehlo.custom_call @annotate_device_placement(%5#0) {has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "device"}} : (tensor<16xf32>) -> tensor<16xf32>
    %7 = stablehlo.custom_call @annotate_device_placement(%5#1) {has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "device"}} : (tensor<16xf32>) -> tensor<16xf32>
    %8 = stablehlo.broadcast_in_dim %5#2, dims = [] : (tensor<f32>) -> tensor<16xf32>
    %9 = stablehlo.multiply %8, %7 : tensor<16xf32>
    %10 = stablehlo.multiply %9, %6 : tensor<16xf32>
    return %10 : tensor<16xf32>
  }
}

@qihqi qihqi requested a review from tengyifei November 1, 2024 23:00
This is used for host-offloading.

example code of what jax emits:
```python
def policy(prim, *avals, **params) -> Offloadable:
  return Offloadable(src='device', dst='pinned_host')

@functools.partial(jax.remat, policy=policy)
def f(x):
  x = jnp.sin(x)
  x = jnp.sin(x)
  return jnp.sum(x)
```

becomes:
```mlir
module @jit_f attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} {
  func.func public @main(%arg0: tensor<16xf32> {mhlo.layout_mode = "default"}) -> (tensor<16xf32> {jax.result_info = "", mhlo.layout_mode = "default"}) {
    %0 = stablehlo.sine %arg0 : tensor<16xf32>
    %1 = stablehlo.cosine %arg0 : tensor<16xf32>
    %2 = stablehlo.custom_call @annotate_device_placement(%1) {has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "pinned_host"}} : (tensor<16xf32>) -> tensor<16xf32>
    %3 = stablehlo.cosine %0 : tensor<16xf32>
    %4 = stablehlo.custom_call @annotate_device_placement(%3) {has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "pinned_host"}} : (tensor<16xf32>) -> tensor<16xf32>
    %cst = stablehlo.constant dense<1.000000e+00> : tensor<f32>
    %5:3 = stablehlo.optimization_barrier %2, %4, %cst : tensor<16xf32>, tensor<16xf32>, tensor<f32>
    %6 = stablehlo.custom_call @annotate_device_placement(%5#0) {has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "device"}} : (tensor<16xf32>) -> tensor<16xf32>
    %7 = stablehlo.custom_call @annotate_device_placement(%5#1) {has_side_effect = true, mhlo.frontend_attributes = {_xla_buffer_placement = "device"}} : (tensor<16xf32>) -> tensor<16xf32>
    %8 = stablehlo.broadcast_in_dim %5#2, dims = [] : (tensor<f32>) -> tensor<16xf32>
    %9 = stablehlo.multiply %8, %7 : tensor<16xf32>
    %10 = stablehlo.multiply %9, %6 : tensor<16xf32>
    return %10 : tensor<16xf32>
  }
}
```
@tengyifei
Copy link
Collaborator

Need to format python files to pass linter

@tengyifei tengyifei merged commit a19a996 into master Nov 4, 2024
13 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants