-
Notifications
You must be signed in to change notification settings - Fork 7.2k
Add ShuffleNet v2 #849
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Add ShuffleNet v2 #849
Changes from 2 commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -6,3 +6,4 @@ | |
| from .densenet import * | ||
| from .googlenet import * | ||
| from .mobilenet import * | ||
| from .shufflenetv2 import * | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,186 @@ | ||
| import functools | ||
|
|
||
| import torch | ||
| import torch.nn as nn | ||
|
|
||
| __all__ = ['ShuffleNetV2', 'shufflenetv2', | ||
| 'shufflenetv2_x0_5', 'shufflenetv2_x1_0', | ||
| 'shufflenetv2_x1_5', 'shufflenetv2_x2_0'] | ||
|
|
||
| model_urls = { | ||
| 'shufflenetv2_x0.5': | ||
| 'https://github.com/barrh/Shufflenet-v2-Pytorch/releases/download/v0.1.0/shufflenetv2_x0.5-f707e7126e.pt', | ||
| 'shufflenetv2_x1.0': | ||
| 'https://github.com/barrh/Shufflenet-v2-Pytorch/releases/download/v0.1.0/shufflenetv2_x1-5666bf0f80.pt', | ||
| 'shufflenetv2_x1.5': None, | ||
| 'shufflenetv2_x2.0': None, | ||
| } | ||
|
|
||
|
|
||
| def channel_shuffle(x, groups): | ||
| batchsize, num_channels, height, width = x.data.size() | ||
| channels_per_group = num_channels // groups | ||
|
|
||
| # reshape | ||
| x = x.view(batchsize, groups, | ||
| channels_per_group, height, width) | ||
|
|
||
| x = torch.transpose(x, 1, 2).contiguous() | ||
|
|
||
| # flatten | ||
| x = x.view(batchsize, -1, height, width) | ||
|
|
||
| return x | ||
|
|
||
|
|
||
| class InvertedResidual(nn.Module): | ||
| def __init__(self, inp, oup, stride): | ||
| super(InvertedResidual, self).__init__() | ||
|
|
||
| if not (1 <= stride <= 3): | ||
| raise ValueError('illegal stride value') | ||
| self.stride = stride | ||
|
|
||
| branch_features = oup // 2 | ||
| assert (self.stride != 1) or (inp == branch_features << 1) | ||
|
|
||
| pw_conv11 = functools.partial(nn.Conv2d, kernel_size=1, stride=1, padding=0, bias=False) | ||
| dw_conv33 = functools.partial(self.depthwise_conv, | ||
| kernel_size=3, stride=self.stride, padding=1) | ||
|
|
||
| if self.stride > 1: | ||
| self.branch1 = nn.Sequential( | ||
| dw_conv33(inp, inp), | ||
| nn.BatchNorm2d(inp), | ||
| pw_conv11(inp, branch_features), | ||
| nn.BatchNorm2d(branch_features), | ||
| nn.ReLU(inplace=True), | ||
| ) | ||
|
|
||
| self.branch2 = nn.Sequential( | ||
| pw_conv11(inp if (self.stride > 1) else branch_features, branch_features), | ||
| nn.BatchNorm2d(branch_features), | ||
| nn.ReLU(inplace=True), | ||
| dw_conv33(branch_features, branch_features), | ||
| nn.BatchNorm2d(branch_features), | ||
| pw_conv11(branch_features, branch_features), | ||
| nn.BatchNorm2d(branch_features), | ||
| nn.ReLU(inplace=True), | ||
| ) | ||
|
|
||
| @staticmethod | ||
| def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False): | ||
| return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) | ||
|
|
||
| def forward(self, x): | ||
| if self.stride == 1: | ||
| x1, x2 = x.chunk(2, dim=1) | ||
| out = torch.cat((x1, self.branch2(x2)), dim=1) | ||
| else: | ||
| out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) | ||
|
|
||
| out = channel_shuffle(out, 2) | ||
|
|
||
| return out | ||
|
|
||
|
|
||
| class ShuffleNetV2(nn.Module): | ||
| def __init__(self, num_classes=1000, input_size=224, width_mult=1): | ||
| super(ShuffleNetV2, self).__init__() | ||
|
|
||
| try: | ||
| self.stage_out_channels = self._getStages(float(width_mult)) | ||
| except KeyError: | ||
| raise ValueError('width_mult {} is not supported'.format(width_mult)) | ||
|
|
||
| input_channels = 3 | ||
| output_channels = self.stage_out_channels[0] | ||
| self.conv1 = nn.Sequential( | ||
| nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False), | ||
| nn.BatchNorm2d(output_channels), | ||
| nn.ReLU(inplace=True), | ||
| ) | ||
| input_channels = output_channels | ||
|
|
||
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||
|
|
||
| stage_names = ['stage{}'.format(i) for i in [2, 3, 4]] | ||
| stage_repeats = [4, 8, 4] | ||
| for name, repeats, output_channels in zip( | ||
| stage_names, stage_repeats, self.stage_out_channels[1:]): | ||
| seq = [InvertedResidual(input_channels, output_channels, 2)] | ||
| for i in range(repeats - 1): | ||
| seq.append(InvertedResidual(output_channels, output_channels, 1)) | ||
| setattr(self, name, nn.Sequential(*seq)) | ||
| input_channels = output_channels | ||
|
|
||
| output_channels = self.stage_out_channels[-1] | ||
| self.conv5 = nn.Sequential( | ||
| nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False), | ||
| nn.BatchNorm2d(output_channels), | ||
| nn.ReLU(inplace=True), | ||
| ) | ||
|
|
||
| if (input_size % 32): | ||
| raise ValueError('illegal input_size') | ||
| self.globalpool = nn.AvgPool2d(int(input_size / 32)) | ||
|
|
||
| # expected ifm size is: channels x 1 x 1 | ||
| self.fc = nn.Linear(self.stage_out_channels[-1], num_classes) | ||
|
|
||
| def forward(self, x): | ||
| x = self.conv1(x) | ||
| x = self.maxpool(x) | ||
| x = self.stage2(x) | ||
| x = self.stage3(x) | ||
| x = self.stage4(x) | ||
| x = self.conv5(x) | ||
| x = self.globalpool(x) | ||
| x = x.view(-1, self.stage_out_channels[-1]) | ||
| x = self.fc(x) | ||
| return x | ||
|
|
||
| @staticmethod | ||
| def _getStages(mult): | ||
| stages = { | ||
| '0.5': [24, 48, 96, 192, 1024], | ||
| '1.0': [24, 116, 232, 464, 1024], | ||
| '1.5': [24, 176, 352, 704, 1024], | ||
| '2.0': [24, 244, 488, 976, 2048], | ||
| } | ||
| return stages[str(mult)] | ||
|
|
||
|
|
||
| def shufflenetv2(pretrained=False, num_classes=1000, input_size=224, width_mult=1, **kwargs): | ||
| model = ShuffleNetV2(num_classes=num_classes, input_size=input_size, width_mult=width_mult) | ||
|
|
||
| if pretrained: | ||
| # change width_mult to float | ||
| if isinstance(width_mult, int): | ||
| width_mult = float(width_mult) | ||
| model_type = ('_'.join([ShuffleNetV2.__name__, 'x' + str(width_mult)])) | ||
| try: | ||
| model_url = model_urls[model_type.lower()] | ||
| except KeyError: | ||
| raise ValueError('model {} is not support'.format(model_type)) | ||
| if model_url is None: | ||
| raise NotImplementedError('pretrained {} is not supported'.format(model_type)) | ||
| model.load_state_dict(torch.utils.model_zoo.load_url(model_url)) | ||
|
|
||
| return model | ||
|
|
||
|
|
||
| def shufflenetv2_x0_5(pretrained=False, num_classes=1000, input_size=224, **kwargs): | ||
| return shufflenetv2(pretrained, num_classes, input_size, 0.5) | ||
|
|
||
|
|
||
| def shufflenetv2_x1_0(pretrained=False, num_classes=1000, input_size=224, **kwargs): | ||
| return shufflenetv2(pretrained, num_classes, input_size, 1) | ||
|
|
||
|
|
||
| def shufflenetv2_x1_5(pretrained=False, num_classes=1000, input_size=224, **kwargs): | ||
| return shufflenetv2(pretrained, num_classes, input_size, 1.5) | ||
|
|
||
|
|
||
| def shufflenetv2_x2_0(pretrained=False, num_classes=1000, input_size=224, **kwargs): | ||
| return shufflenetv2(pretrained, num_classes, input_size, 2) | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.