-
Notifications
You must be signed in to change notification settings - Fork 550
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
enable LoRA + FSDP2 #855
Merged
Merged
enable LoRA + FSDP2 #855
Changes from all commits
Commits
Show all changes
58 commits
Select commit
Hold shift + click to select a range
e5826a1
enable LoRA + FSDP2
weifengpy 64fc870
reset params for lora weights and rope
weifengpy 0cd21c6
support lora weights checkpoint and checkpoint utils
weifengpy 589191e
fix lora meta device bug
weifengpy c801f26
save optim state dict
weifengpy 19a2d70
mark TODO
weifengpy 441da10
optimizer foreach=True for DTensor
weifengpy 750b9e5
clip grad norm
weifengpy 3d632d5
switch to ptd state dict api
weifengpy cb3abb3
add profiler
weifengpy e68804a
use torchao copy_
weifengpy d6af9a2
enable saving checkpoint
weifengpy b616394
optimizer state dict: load on rank0 and broadcast
weifengpy a400497
import Optimizer
weifengpy e9de63c
resume training
weifengpy 05d3895
prepare for full test
weifengpy 7a5bb80
prepare for full test
weifengpy 64bf49c
remove profiler
weifengpy cb1bba4
passed integration test
weifengpy ac516e9
remove uncesssary change
weifengpy bfde704
Merge branch 'main' into fsdp2
weifengpy 102db31
bring back state dict validation
weifengpy 0b66651
align indent on comment
weifengpy 672aabb
remove unused import
weifengpy 6af2723
switch to ptd state dict and keep self implemented in record
weifengpy 42ad99c
clean unused code
weifengpy 74f6175
remove cuda value error
weifengpy f1b8a5e
comment on to_empty
weifengpy 36e6829
fix memory issues by switching model state dict api
weifengpy 08cd1fd
clean for review
weifengpy 559bc4d
Merge branch 'main' into fsdp2
weifengpy 2333134
fix linter
weifengpy 49a0364
fix checkpoint loading
weifengpy dc2ce02
expecttest CI depedency
weifengpy 0a604aa
ci depdencecy
weifengpy fa83140
fix CI issue
weifengpy 4b5a895
Merge branch 'pytorch:main' into fsdp2
weifengpy a2e34ec
support resuming training
weifengpy 6142031
update docstring
weifengpy 7607e14
remove depdency on broadcast_from_rank0
weifengpy 1899beb
remove the need for model.to(device)
weifengpy c1cfabb
wrap lora and TransformerBlock
weifengpy d7382ae
require torch version 2.4.0
weifengpy d1ff53b
FSDP(CheckpointWrapper(model))
weifengpy 1eb9e87
remove model.to()
weifengpy 695e959
add docstrings and remove depdency on dcp
weifengpy e10f638
remove try...catch FSDPModule
weifengpy b1e3d30
Merge branch 'main' into fsdp2
weifengpy 944a723
fsdp2 as dev recipe
weifengpy ac5f7aa
restore lora_finetune_distributed
weifengpy d769626
test cudnn ci error
weifengpy f90c3cc
test CI error
weifengpy 42ef49a
address CI error for setting seed
weifengpy 170de94
add back pytest
weifengpy f8a7018
add expecttest
weifengpy a3b2f3e
pytest 7.4.0
weifengpy 1a692b3
add dev/recipe
weifengpy 8fbbc4b
update yaml with lora_finetune_fsdp2
weifengpy File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# Config for multi-device LoRA with FSDP2 in lora_finetune_fsdp2.py | ||
# using a Llama2 13B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-13b-hf --output-dir /tmp/Llama-2-13b-hf --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 4 lora_finetune_fsdp2 --config llama2/13B_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 4 lora_finetune_fsdp2 --config llama2/13B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# For single device LoRA finetuning please use 7B_lora_single_device.yaml | ||
# or 7B_qlora_single_device.yaml and update the model and checkpoints to | ||
# the 13B model. | ||
|
||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.lora_llama2_13b | ||
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj'] | ||
apply_lora_to_mlp: True | ||
apply_lora_to_output: True | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-13b-hf/ | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00003.bin, | ||
pytorch_model-00002-of-00003.bin, | ||
pytorch_model-00003-of-00003.bin | ||
] | ||
adapter_checkpoint: null | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-13b-hf/ | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-13b-hf/tokenizer.model | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
train_on_input: True | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
weight_decay: 0.01 | ||
lr: 2e-4 | ||
lr_scheduler: | ||
_component_: torchtune.modules.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 16 | ||
|
||
# Logging | ||
output_dir: /tmp/lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# Config for multi-device LoRA with FSDP2 lora_finetune_fsdp2.py | ||
# using a Llama2 70B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-70b-hf --output-dir /tmp/Llama-2-70b-hf --hf-token <HF_TOKEN> | ||
# | ||
# This config needs 8 GPUs to run | ||
# # tune run --nproc_per_node 8 lora_finetune_fsdp2 --config llama2/70B_lora | ||
# | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.lora_llama2_70b | ||
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 16 | ||
lora_alpha: 32 | ||
|
||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-70b-hf/tokenizer.model | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-70b-hf | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00015.bin, | ||
pytorch_model-00002-of-00015.bin, | ||
pytorch_model-00003-of-00015.bin, | ||
pytorch_model-00004-of-00015.bin, | ||
pytorch_model-00005-of-00015.bin, | ||
pytorch_model-00006-of-00015.bin, | ||
pytorch_model-00007-of-00015.bin, | ||
pytorch_model-00008-of-00015.bin, | ||
pytorch_model-00009-of-00015.bin, | ||
pytorch_model-00010-of-00015.bin, | ||
pytorch_model-00011-of-00015.bin, | ||
pytorch_model-00012-of-00015.bin, | ||
pytorch_model-00013-of-00015.bin, | ||
pytorch_model-00014-of-00015.bin, | ||
pytorch_model-00015-of-00015.bin, | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-70b-hf | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_dataset | ||
train_on_input: True | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.modules.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 | ||
|
||
# Logging | ||
output_dir: /tmp/lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: True |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
# Config for multi-device LoRA finetuning with FSDP2 in lora_finetune_fsdp2.py | ||
# using a Llama2 7B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_fsdp2 --config llama2/7B_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_fsdp2 --config llama2/7B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# For single device LoRA finetuning please use 7B_lora_single_device.yaml | ||
# or 7B_qlora_single_device.yaml | ||
|
||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.lora_llama2_7b | ||
lora_attn_modules: ['q_proj', 'v_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
|
||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-7b-hf/tokenizer.model | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-7b-hf | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00002.bin, | ||
pytorch_model-00002-of-00002.bin | ||
] | ||
adapter_checkpoint: null | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-7b-hf | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
train_on_input: True | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.modules.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 32 | ||
|
||
# Logging | ||
output_dir: /tmp/lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
from torch.testing._internal.common_utils import run_tests
has a depdency onpytest==7.4.0
andexpecttest
, borrowed from pytorch repoThere was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is
run_tests
strictly required for the usage ofFSDPTest
, or is it more used for convenience? (Either way not a huge issue)There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
it's strictly required for the usage of
FSDPTest