Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/main' into flux_ae
Browse files Browse the repository at this point in the history
  • Loading branch information
calvinpelletier committed Dec 2, 2024
2 parents e7504b6 + 32e265d commit aa8b751
Show file tree
Hide file tree
Showing 33 changed files with 521 additions and 84 deletions.
2 changes: 2 additions & 0 deletions .github/workflows/build_linux_wheels.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,8 @@ jobs:
with:
repository: pytorch/torchtune
ref: ""
test-infra-repository: pytorch/test-infra
test-infra-ref: main
package-name: torchtune
build-matrix: ${{ needs.generate-matrix.outputs.matrix }}
pre-script: .github/scripts/pre_build_script.sh
Expand Down
1 change: 1 addition & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,7 @@ torchtune tutorials.
recipes/recipes_overview
recipes/lora_finetune_single_device
recipes/qat_distributed
recipes/dpo

.. toctree::
:glob:
Expand Down
75 changes: 75 additions & 0 deletions docs/source/recipes/dpo.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
.. _dpo_recipe_label:

====================================
Direct Preference Optimization
====================================

This recipe supports several `Direct Preference Optimization <https://arxiv.org/abs/2305.18290>`_ (DPO)-style fine-tuning techniques.
These techniques aim to steer (or `align <https://en.wikipedia.org/wiki/AI_alignment>`_) a model towards some desirable behaviours.
For example, a common goal is to train language models to produce safe and honest outputs,
or to be `helpful and harmless <https://arxiv.org/abs/2204.05862>`_.

To see the best results when using this recipe, it may be helpful to first fine-tune your model with using supervised fine-tuning to ensure your model is
on-distribution for the domain you're interested in. To do this, check out our other fine-tuning recipes in the :ref:`recipe overview <recipes_overview_label>` which
support a variety of SFT paradigms.

After supervised fine-tuning, here is an example of DPO with Llama 3.1 8B:

.. note::

You may need to be granted access to the Llama model you're interested in. See
:ref:`here <download_llama_label>` for details on accessing gated repositories.


.. code-block:: bash
tune download meta-llama/Meta-Llama-3.1-8B-Instruct \
--ignore-patterns "original/consolidated.00.pth"
--HF_TOKEN <HF_TOKEN>
# run on a single device
tune run lora_dpo_single_device --config llama3_1/8B_lora_dpo_single_device
# run on two gpus
tune run --nproc_per_node 2 lora_dpo_distributed --config llama3_1/8B_lora_dpo
It's easy to get started with this recipe with your dataset of choice, including custom local datasets,
and datasets from Hugging Face. Check out our primer on :ref:`preference datasets <preference_dataset_usage_label>` to
see how to do this.

For this recipe we include different DPO-style losses:

* :class:`Direct Preference Optimization <torchtune.rlhf.loss.DPOLoss>` (DPO) loss [#]_. The DPO loss function
increases the relative log-probabilities of preferred to un-preferred responses, whilst using log probabilities
from a reference model to prevent policy degradation during training. Alongside RLHF, this is the most commonly used
alignment technique and is used to train a growing number of state-of-the-art LLMs e.g. Llama3.1, Gemma 2, Qwen2, etc.
This is a good starting point for alignment fine-tuning.
* :class:`Statistical Rejection Sampling Optimization <torchtune.rlhf.loss.RSOLoss>` (RSO) or "hinge" loss [#]_.
RSO builds on concepts from support vector machines and DPO, applying a margin-based approach that penalizes
low-quality responses while ensuring a significant gap between chosen and un-chosen log probabilities.

To use any of these, simply use the ``loss`` config entry or flag through the :ref:`cli_label`:

.. code-block:: bash
tune run lora_dpo_single_device --config llama2/7B_lora_dpo_single_device \
loss=torchtune.modules.loss.RSOLoss \
gamma=0.5
.. todo (@SalmanMohammadi) point to an example repo for SimPO
For a deeper understanding of the different levers you can pull when using this recipe,
see our documentation for the different PEFT training paradigms we support:

* :ref:`glossary_lora`
* :ref:`glossary_qlora`
* :ref:`glossary_dora`

Many of our other memory optimization features can be used in this recipe. You can learn more about all of our memory optimization features in our :ref:`memory optimization overview<memory_optimization_overview_label>`.

.. rubric:: References:

.. [#] Rafailov, R., Sharma, A., Mitchell, E., Manning, C.D., Ermon, S. and Finn, C., 2024.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36.
.. [#] Liu, T., Zhao, Y., Joshi, R., Khalman, M., Saleh, M., Liu, P.J. and Liu, J., 2023.
Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657.
2 changes: 1 addition & 1 deletion docs/source/recipes/lora_finetune_single_device.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ This recipe supports finetuning on next-token prediction tasks using parameter e
such as :ref:`glossary_lora` and :ref:`glossary_qlora`. These techniques
significantly reduce memory consumption during training whilst still maintaining competitive performance.

We provide configs which you can get up and running quickly. Here is an example with llama 3.1 8B:
We provide configs which you can get up and running quickly. Here is an example with Llama 3.1 8B:

.. note::

Expand Down
2 changes: 1 addition & 1 deletion docs/source/recipes/recipes_overview.rst
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ Our recipes include:
* Single-device full fine-tuning
* Distributed full fine-tuning
* Distributed LoRA fine-tuning
* Direct Preference Optimization (DPO)
* :ref:`Direct Preference Optimization (DPO) <dpo_recipe_label>`
* Proximal Policy Optimization (PPO)
* :ref:`Distributed Quantization-Aware Training (QAT)<qat_distributed_recipe_label>`.

Expand Down
3 changes: 3 additions & 0 deletions recipes/configs/llama2/7B_lora_dpo.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -83,4 +83,7 @@ log_peak_memory_stats: True
# Environment
device: cuda
dtype: bf16

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
3 changes: 3 additions & 0 deletions recipes/configs/llama2/7B_lora_dpo_single_device.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -80,4 +80,7 @@ log_peak_memory_stats: True
# Environment
device: cuda
dtype: bf16

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
1 change: 1 addition & 0 deletions recipes/configs/llama3/70B_lora.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@ device: cuda
dtype: bf16
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
# custom_sharded_layers: ['tok_embeddings', 'output'] # Layers to shard separately (useful for large vocab size models). Lower Memory, but lower speed.

# Profiler (disabled)
profiler:
Expand Down
1 change: 1 addition & 0 deletions recipes/configs/llama3_1/70B_lora.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@ device: cuda
dtype: bf16
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
# custom_sharded_layers: ['tok_embeddings', 'output'] # Layers to shard separately (useful for large vocab size models). Lower Memory, but lower speed.

# Profiler (disabled)
profiler:
Expand Down
92 changes: 92 additions & 0 deletions recipes/configs/llama3_1/8B_lora_dpo.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
# Config for multi-device LoRA DPO alignment in lora_dpo_distributed.py
# using a Llama2 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Meta-Llama-3.1-8B-Instruct --output-dir /tmp/Meta-Llama-3.1-8B-Instruct --ignore-patterns "original/consolidated.00.pth"
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 lora_dpo_distributed --config llama3_1/8B_lora_dpo
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 lora_dpo_distributed --config llama3_1/8B_lora_dpo checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA DPO alignment please use llama3_1/8B_lora_dpo_single_device

# Model Arguments
model:
_component_: torchtune.models.llama3_1.lora_llama3_1_8b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
lora_dropout: 0.0

# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3.1-8B-Instruct/original/tokenizer.model
max_seq_len: null

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
checkpoint_files: [
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
model_type: LLAMA3
resume_from_checkpoint: False
save_adapter_weights_only: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.stack_exchange_paired_dataset
seed: null
shuffle: True
batch_size: 4

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.05
lr: 5e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.rlhf.loss.DPOLoss
beta: 0.1
label_smoothing: 0

# Training
epochs: 1
max_steps_per_epoch: 1000
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory

# Logging
output_dir: /tmp/lora_dpo_output/
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
89 changes: 89 additions & 0 deletions recipes/configs/llama3_1/8B_lora_dpo_single_device.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# Config for single device LoRA DPO alignment in lora_dpo_single_device.py
# using a Llama2 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Meta-Llama-3.1-8B-Instruct --output-dir /tmp/Meta-Llama-3.1-8B-Instruct --ignore-patterns "original/consolidated.00.pth"
#
# To launch on a single device, run the following command from root:
# tune run lora_dpo_single_device --config llama3_1/8B_lora_dpo_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_dpo_single_device --config llama3_1/8B_lora_dpo_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.

# Model Arguments
model:
_component_: torchtune.models.llama3_1.lora_llama3_1_8b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
lora_dropout: 0.0

# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3.1-8B-Instruct/original/tokenizer.model
max_seq_len: null

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
checkpoint_files: [
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
model_type: LLAMA3
resume_from_checkpoint: False
save_adapter_weights_only: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.stack_exchange_paired_dataset
seed: null
shuffle: True
batch_size: 4

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.05
lr: 5e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.rlhf.loss.DPOLoss

# Training
epochs: 1
max_steps_per_epoch: 1000
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory

# Logging
output_dir: /tmp/lora_dpo_output/
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
1 change: 1 addition & 0 deletions recipes/configs/qwen2_5/32B_lora.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,7 @@ device: cuda
dtype: bf16
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory
# custom_sharded_layers: ['tok_embeddings'] # Layers to shard separately (useful for large vocab size models). Lower Memory, but lower speed.

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
Expand Down
1 change: 1 addition & 0 deletions recipes/configs/qwen2_5/72B_lora.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,7 @@ device: cuda
dtype: bf16
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
# custom_sharded_layers: ['tok_embeddings'] # Layers to shard separately (useful for large vocab size models). Lower Memory, but lower speed.

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
Expand Down
9 changes: 0 additions & 9 deletions recipes/full_finetune_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,15 +122,6 @@ def __init__(self, cfg: DictConfig) -> None:
"full fp16 training is not supported with this recipe. Please use bf16 or fp32 instead."
)

if (
cfg.get("fsdp_cpu_offload", False)
and cfg.optimizer.get("fused", False)
and not utils.torch_version_ge("2.4.0")
):
raise RuntimeError(
"Using fused optimizer on CPU is only supported in PyTorch nightly."
)

# logging attributes
self._output_dir = cfg.output_dir
self._log_every_n_steps = cfg.get("log_every_n_steps", 1)
Expand Down
Loading

0 comments on commit aa8b751

Please sign in to comment.