Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The FID result cannot be aligned with pytorch-fid/torch-fidelity #192

Open
SingleZombie opened this issue Feb 21, 2024 · 2 comments
Open

Comments

@SingleZombie
Copy link

SingleZombie commented Feb 21, 2024

🐛 Describe the bug

Just use FrechetInceptionDistance on any images.

import torch
from torcheval.metrics import FrechetInceptionDistance
imgs_1 = ...
imgs_2 = ...
fid = FrechetInceptionDistance(device=device)
fid.update(imgs_1 , True)
fid.update(imgs_2 , False)
print(fid.compute())

I have found the causes.

  1. The model and weight of InceptionV3 is not strictly same to the TensorFlow version, which is used by most papers. Now I replace it with InceptionV3 model from pytorch-fid.
  2. The insufficient precision of torcheval.metrics.image.fid.FrechetInceptionDistance._calculate_frechet_distance leads to wrong results. I fix this by setting all variables (fake_sum, real_cov_sum, ...) to float64.

With these modifications, the FID results are aligned. I suggest the maintainers reimplement the FID to align it with other libraries, otherwise researchers won't use torcheval to calculate FID.

Versions

PyTorch version: 2.0.1+cu117
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A

OS: Ubuntu 18.04.5 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Versions of relevant libraries:
[pip3] flake8==7.0.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.24.4
[pip3] pytorch-fid==0.3.0
[pip3] pytorch-lightning==1.4.2
[pip3] torch==2.0.1
[pip3] torch-ema==0.3
[pip3] torch-fidelity==0.3.0
[pip3] torchaudio==2.0.2
[pip3] torcheval==0.0.7
[pip3] torchmetrics==0.5.0
[pip3] torchvision==0.15.2
[pip3] triton==2.0.0
[conda] blas 1.0 mkl
[conda] cudatoolkit 11.3.1 h2bc3f7f_2
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] mkl 2021.4.0 h06a4308_640
[conda] mkl-service 2.4.0 py38h7f8727e_0
[conda] mkl_fft 1.3.1 py38hd3c417c_0
[conda] mkl_random 1.2.2 py38h51133e4_0
[conda] numpy 1.24.4 pypi_0 pypi
[conda] pytorch-fid 0.3.0 pypi_0 pypi
[conda] pytorch-lightning 1.4.2 pypi_0 pypi
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] torch 2.0.1 pypi_0 pypi
[conda] torch-ema 0.3 pypi_0 pypi
[conda] torch-fidelity 0.3.0 pypi_0 pypi
[conda] torchaudio 2.0.2 pypi_0 pypi
[conda] torcheval 0.0.7 pypi_0 pypi
[conda] torchmetrics 0.5.0 pypi_0 pypi
[conda] torchvision 0.15.2 pypi_0 pypi
[conda] triton 2.0.0 pypi_0 pypi

@AwalkZY
Copy link

AwalkZY commented Feb 26, 2024

Same here. Strongly suggest maintainers aligning the calculation with pytorch-fid or torch-fidelity.

@Tiphaine-Lela
Copy link

I got the same problem. Increasing the precision to float64 is needed.

Tiphaine-Lela pushed a commit to Tiphaine-Lela/torcheval_fix192 that referenced this issue Nov 22, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants