Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Replace RMSNorm by nn.RMSNorm (#1464)
In this PR we replace torchchat's own [RMSNorm](https://github.com/pytorch/torchchat/blob/f4ae60fc936328c7ebd4551019733dc0942c42f9/torchchat/model.py#L931-L942) implementation by nn.RMSNorm, and we bump the PyTorch pin to capture the massive speed up (30x-40x) to RMSNorm on MPS backend introduced in pytorch/pytorch#145301 Preliminary benchmarks on an M1 Pro with 16GB RAM, show a 33% speed up on token generation when running Llama 3.2 1B with 4-bit quantization Motivation: Token generation on MPS backend is currently CPU bound, because of MPSGraph overhead. Surprisingly, the ops that are impacting performance the most are simple ones: mul, copy_, add, where, mean, rsqrt, sub, cat, stack. Experiments on an M1 Pro show that each of those op calls on the MPS backend, has at least 20us of CPU overhead. Also, these ops dominate the graph. For example, in aggregate, these ops are called 770 times for each token, when running Llama 3.2 1B. Compare that to SDPA which is called only 33 times, and linear which is called 113 times. - mul is called 275 times per token - copy_ is called 202 times per token - add is called 97 times per token - where is called 34 times per token - mean is called 33 times per token - rsqrt is called 33 times per token - sub is called 32 times per token - cat is called 32 times per token - stack is called 32 times per token Currently, torchchat's own [RMSNorm](https://github.com/pytorch/torchchat/blob/f4ae60fc936328c7ebd4551019733dc0942c42f9/torchchat/model.py#L931-L942) operation is basically implemented like this: ``` norm = x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) output = norm(x.float()).type_as(x) * weight ``` This means that a single call to torchchat's RMSNorm involves 3 calls to `aten::mul` and calls to `aten::rsqrt`, `aten::mean` and `aten::add`. RMSNorm is called 33 times for each token. Hence, RMSNorm contributes 5 * 33 = 165 of those 770 op calls.
- Loading branch information