-
Notifications
You must be signed in to change notification settings - Fork 278
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
split test_torchsnapshot_saver to two test files
Summary: Extract GPU requiring test case from `test_torchsnapshot_saver` to `test_torchsnapshot_saver_gpu` Differential Revision: D49482055
- Loading branch information
1 parent
0b926c3
commit 8554fae
Showing
2 changed files
with
90 additions
and
78 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import os | ||
import shutil | ||
import tempfile | ||
import unittest | ||
|
||
import torch | ||
|
||
from torchtnt.framework._test_utils import DummyAutoUnit, generate_random_dataloader | ||
from torchtnt.framework.callbacks.torchsnapshot_saver import TorchSnapshotSaver | ||
from torchtnt.framework.train import train | ||
from torchtnt.utils.distributed import get_global_rank | ||
from torchtnt.utils.test_utils import spawn_multi_process | ||
|
||
|
||
class TorchSnapshotSaverGPUTest(unittest.TestCase): | ||
cuda_available: bool = torch.cuda.is_available() | ||
distributed_available: bool = torch.distributed.is_available() | ||
|
||
@unittest.skipUnless( | ||
condition=distributed_available, reason="Torch distributed is needed to run" | ||
) | ||
@unittest.skipUnless( | ||
condition=cuda_available, reason="This test needs a GPU host to run." | ||
) | ||
def test_save_restore_fsdp(self) -> None: | ||
spawn_multi_process( | ||
2, | ||
"nccl", | ||
self._save_restore_fsdp, | ||
) | ||
|
||
@staticmethod | ||
def _save_restore_fsdp() -> None: | ||
input_dim = 2 | ||
dataset_len = 10 | ||
batch_size = 2 | ||
max_epochs = 2 | ||
save_every_n_epochs = 1 | ||
|
||
my_unit = DummyAutoUnit(module=torch.nn.Linear(input_dim, 2), strategy="fsdp") | ||
dataloader = generate_random_dataloader(dataset_len, input_dim, batch_size) | ||
if get_global_rank() == 0: | ||
temp_dir = tempfile.mkdtemp() | ||
else: | ||
temp_dir = "" | ||
|
||
snapshot_cb = TorchSnapshotSaver( | ||
temp_dir, | ||
save_every_n_epochs=save_every_n_epochs, | ||
replicated=["**"], | ||
) | ||
temp_dir = snapshot_cb.dirpath | ||
train(my_unit, dataloader, max_epochs=max_epochs, callbacks=[snapshot_cb]) | ||
|
||
tc = unittest.TestCase() | ||
try: | ||
my_new_unit = DummyAutoUnit( | ||
module=torch.nn.Linear(input_dim, 2), strategy="fsdp" | ||
) | ||
tc.assertNotEqual( | ||
my_new_unit.optimizer.state_dict(), my_unit.optimizer.state_dict() | ||
) | ||
# get latest checkpoint | ||
ckpt_path = os.path.join(temp_dir, f"epoch_{max_epochs}_step_10") | ||
snapshot_cb.restore(ckpt_path, my_new_unit) | ||
tc.assertEqual( | ||
my_new_unit.optimizer.state_dict(), my_unit.optimizer.state_dict() | ||
) | ||
finally: | ||
if get_global_rank() == 0: | ||
shutil.rmtree(temp_dir) # delete temp directory |