Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update r2_score and wave_hedges_distance in test for generating data with different rank #2666

Merged
merged 2 commits into from
Aug 23, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 12 additions & 11 deletions tests/ignite/contrib/metrics/regression/test_r2_score.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,6 @@ def _test_distrib_compute(device, tol=1e-6):
def _test(metric_device):
metric_device = torch.device(metric_device)
m = R2Score(device=metric_device)
torch.manual_seed(10 + rank)

y_pred = torch.randint(0, 10, size=(10,), device=device).float()
y = torch.randint(0, 10, size=(10,), device=device).float()
Expand All @@ -114,7 +113,8 @@ def _test(metric_device):
res = m.compute()
assert r2_score(np_y, np_y_pred) == pytest.approx(res, abs=tol)

for _ in range(3):
for i in range(3):
torch.manual_seed(10 + rank + i)
_test("cpu")
if device.type != "xla":
_test(idist.device())
Expand All @@ -123,22 +123,19 @@ def _test(metric_device):
def _test_distrib_integration(device):

rank = idist.get_rank()
torch.manual_seed(12)

def _test(n_epochs, metric_device):
metric_device = torch.device(metric_device)
n_iters = 80
s = 16
n_classes = 2
batch_size = 16

offset = n_iters * s
y_true = torch.randint(0, 10, size=(offset * idist.get_world_size(),)).to(device).float()
y_preds = torch.randint(0, 10, size=(offset * idist.get_world_size(),)).to(device).float()
y_true = torch.randint(0, 10, size=(n_iters * batch_size,)).to(device).float()
y_preds = torch.randint(0, 10, size=(n_iters * batch_size,)).to(device).float()

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)
Expand All @@ -149,6 +146,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "r2" in engine.state.metrics

res = engine.state.metrics["r2"]
Expand All @@ -163,7 +163,8 @@ def update(engine, i):
if device.type != "xla":
metric_devices.append(idist.device())
for metric_device in metric_devices:
for _ in range(2):
for i in range(2):
torch.manual_seed(12 + rank + i)
_test(n_epochs=1, metric_device=metric_device)
_test(n_epochs=2, metric_device=metric_device)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,6 @@ def _test_distrib_compute(device):
def _test(metric_device):
metric_device = torch.device(metric_device)
m = WaveHedgesDistance(device=metric_device)
torch.manual_seed(10 + rank)

y_pred = torch.randint(0, 10, size=(10,), device=device).float()
y = torch.randint(0, 10, size=(10,), device=device).float()
Expand All @@ -108,7 +107,8 @@ def _test(metric_device):

assert np_sum == pytest.approx(res)

for _ in range(3):
for i in range(3):
torch.manual_seed(10 + rank + i)
_test("cpu")
if device.type != "xla":
_test(idist.device())
Expand All @@ -117,22 +117,19 @@ def _test(metric_device):
def _test_distrib_integration(device):

rank = idist.get_rank()
torch.manual_seed(12)

def _test(n_epochs, metric_device):
metric_device = torch.device(metric_device)
n_iters = 80
s = 16
n_classes = 2
batch_size = 16

offset = n_iters * s
y_true = torch.rand(size=(offset * idist.get_world_size(),)).to(device)
y_preds = torch.rand(size=(offset * idist.get_world_size(),)).to(device)
y_true = torch.rand(size=(n_iters * batch_size,)).to(device)
y_preds = torch.rand(size=(n_iters * batch_size,)).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)
Expand All @@ -143,6 +140,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "whm" in engine.state.metrics

res = engine.state.metrics["whm"]
Expand All @@ -158,7 +158,8 @@ def update(engine, i):
if device.type != "xla":
metric_devices.append(idist.device())
for metric_device in metric_devices:
for _ in range(2):
for i in range(2):
torch.manual_seed(12 + rank + i)
_test(n_epochs=1, metric_device=metric_device)
_test(n_epochs=2, metric_device=metric_device)

Expand Down