Skip to content

Commit

Permalink
Add cachemask variant for fake_quantize_affine
Browse files Browse the repository at this point in the history
Summary: In QAT, we often wish to filter out the gradients
corresponding to values outside the expected quantization
range, for example:

```
q = _quantize_affine_no_dtype_cast(...)
dq = _dequantize_affine_no_dtype_check(...)
mask = torch.logical_and((q >= quant_min), (q <= quant_max))

grad = grad * mask
```

The existing `fake_quantize_affine` returns the dequantized
values only, so callers do not have access to this mask.
This commit adds the variant to this op that returns both
the dequantized values and the mask, similar to
`fake_quantize_per_tensor_affine_cachemask` in core.

Test Plan:
python test/quantization/test_quant_primitives.py -k test_fake_quantize_affine_cachemask
  • Loading branch information
andrewor14 committed Jul 16, 2024
1 parent aef7e09 commit d70f92c
Show file tree
Hide file tree
Showing 2 changed files with 96 additions and 1 deletion.
24 changes: 24 additions & 0 deletions test/quantization/test_quant_primitives.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import torch
from torchao.quantization.quant_primitives import (
fake_quantize_affine,
fake_quantize_affine_cachemask,
quantize_affine,
dequantize_affine,
choose_qparams_affine,
Expand Down Expand Up @@ -523,5 +524,28 @@ def test_fake_quantize_affine(self):
fake_quantized = fake_quantize_affine(input, block_size, scale, zero_point, dtype, quant_min, quant_max)
torch.testing.assert_close(dequantized, fake_quantized)

@unittest.skipIf(not TORCH_VERSION_AFTER_2_4, "skipping when torch version is 2.4 or lower")
def test_fake_quantize_affine_cachemask(self):
input = torch.randn(10, 10)

mapping_type = MappingType.SYMMETRIC
block_size = list(input.shape)
for i in range(len(block_size) - 1):
block_size[i] = 1
dtype = torch.int8
eps = 1e-5
quant_min = -127
quant_max = 127
scale, zero_point = choose_qparams_affine(input, mapping_type, block_size, dtype, quant_min, quant_max, eps=eps, scale_dtype=torch.float)

quantized = quantize_affine(input, block_size, scale, zero_point, dtype, quant_min, quant_max)
dequantized = dequantize_affine(quantized, block_size, scale, zero_point, dtype, quant_min, quant_max)
(fake_quantized, mask) = fake_quantize_affine_cachemask(
input, block_size, scale, zero_point, dtype, quant_min, quant_max,
)
expected_mask = torch.full(input.shape, True)
torch.testing.assert_close(dequantized, fake_quantized)
torch.testing.assert_close(expected_mask, mask)

if __name__ == "__main__":
unittest.main()
73 changes: 72 additions & 1 deletion torchao/quantization/quant_primitives.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
"quantize_affine",
"dequantize_affine",
"fake_quantize_affine",
"fake_quantize_affine_cachemask",
]

class MappingType(Enum):
Expand Down Expand Up @@ -411,6 +412,76 @@ def fake_quantize_affine(
value during quantization
default is ZeroPointDomain.INT
"""
(_, fq) = _do_fake_quantize_affine(
input,
block_size,
scale,
zero_point,
quant_dtype,
quant_min,
quant_max,
zero_point_domain,
)
return fq


def fake_quantize_affine_cachemask(
input: torch.Tensor,
block_size: Tuple[int, ...],
scale: torch.Tensor,
zero_point: Optional[torch.Tensor],
quant_dtype: torch.dtype,
quant_min: Optional[int] = None,
quant_max: Optional[int] = None,
zero_point_domain: ZeroPointDomain = ZeroPointDomain.INT,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
General fake quantize op for quantization-aware training (QAT).
This is equivalent to calling `quantize_affine` + `dequantize_affine`
but without the dtype casts.
Note: Compared to :func:`~torchao.quantization.quant_primitives.fake_quantize_affine`,
this consumes more memory and returns an additional outlier mask for
intermediate quantized values.
Args:
Same as :func:`~torchao.quantization.quant_primitives.fake_quantize_affine`.
Returns:
A 2-tuple of (
final fake quantized values,
outlier mask for intermediate quantized values
)
"""
(q, dq) = _do_fake_quantize_affine(
input,
block_size,
scale,
zero_point,
quant_dtype,
quant_min,
quant_max,
zero_point_domain,
)
mask = torch.logical_and((q >= quant_min), (q <= quant_max))
return (dq, mask)


def _do_fake_quantize_affine(
input: torch.Tensor,
block_size: Tuple[int, ...],
scale: torch.Tensor,
zero_point: Optional[torch.Tensor],
quant_dtype: torch.dtype,
quant_min: Optional[int] = None,
quant_max: Optional[int] = None,
zero_point_domain: ZeroPointDomain = ZeroPointDomain.INT,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Helper function for `fake_quantize_affine` that returns both the
intermediate quantized values and the final dequantized values.
"""
input_dtype = input.dtype
quant_min, quant_max = _get_and_check_qmin_qmax(quant_dtype, quant_min, quant_max)
q = _quantize_affine_no_dtype_cast(
Expand All @@ -432,7 +503,7 @@ def fake_quantize_affine(
zero_point_domain.name,
output_dtype=input_dtype,
)
return dq
return (q, dq)


def choose_qparams_affine(
Expand Down

0 comments on commit d70f92c

Please sign in to comment.