-
Notifications
You must be signed in to change notification settings - Fork 149
Use LAPACK functions for cho_solve, lu_factor, solve_triangular
#1605
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 5 commits
63e2ccc
3a8a9a4
0197de5
334a44e
8061159
1d3e180
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -7,7 +7,7 @@ | |
| import numpy as np | ||
| import scipy.linalg as scipy_linalg | ||
| from numpy.exceptions import ComplexWarning | ||
| from scipy.linalg import get_lapack_funcs | ||
| from scipy.linalg import LinAlgError, LinAlgWarning, get_lapack_funcs | ||
|
|
||
| import pytensor | ||
| from pytensor import ifelse | ||
|
|
@@ -384,15 +384,28 @@ def make_node(self, *inputs): | |
| return Apply(self, [A, b], [out]) | ||
|
|
||
| def perform(self, node, inputs, output_storage): | ||
| C, b = inputs | ||
| rval = scipy_linalg.cho_solve( | ||
| (C, self.lower), | ||
| b, | ||
| check_finite=self.check_finite, | ||
| overwrite_b=self.overwrite_b, | ||
| ) | ||
| c, b = inputs | ||
|
|
||
| (potrs,) = get_lapack_funcs(("potrs",), (c, b)) | ||
|
|
||
| output_storage[0][0] = rval | ||
| if self.check_finite and not (np.isfinite(c).all() and np.isfinite(b).all()): | ||
| raise ValueError("array must not contain infs or NaNs") | ||
|
|
||
| if c.ndim != 2 or c.shape[0] != c.shape[1]: | ||
| raise ValueError("The factored matrix c is not square.") | ||
| if c.shape[1] != b.shape[0]: | ||
| raise ValueError(f"incompatible dimensions ({c.shape} and {b.shape})") | ||
|
||
|
|
||
| # Quick return for empty arrays | ||
| if b.size == 0: | ||
| output_storage[0][0] = np.empty_like(b, dtype=potrs.dtype) | ||
| return | ||
|
|
||
| x, info = potrs(c, b, lower=self.lower, overwrite_b=self.overwrite_b) | ||
| if info != 0: | ||
| raise ValueError(f"illegal value in {-info}th argument of internal potrs") | ||
|
|
||
|
Comment on lines
+405
to
+407
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'd prefer if we returned a matrix of This might be out of scope for this PR; asking @ricardoV94 for a 2nd opinion |
||
| output_storage[0][0] = x | ||
|
|
||
| def L_op(self, *args, **kwargs): | ||
| # TODO: Base impl should work, let's try it | ||
|
|
@@ -696,9 +709,27 @@ def inplace_on_inputs(self, allowed_inplace_inputs: list[int]) -> "Op": | |
| def perform(self, node, inputs, outputs): | ||
| A = inputs[0] | ||
|
|
||
| LU, p = scipy_linalg.lu_factor( | ||
| A, overwrite_a=self.overwrite_a, check_finite=self.check_finite | ||
| ) | ||
| # Quick return for empty arrays | ||
| if A.size == 0: | ||
| outputs[0][0] = np.empty_like(A) | ||
| outputs[1][0] = np.arange(0, dtype=np.int32) | ||
Fyrebright marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| return | ||
|
|
||
| if self.check_finite and not np.isfinite(A).all(): | ||
| raise ValueError("array must not contain infs or NaNs") | ||
|
|
||
| (getrf,) = get_lapack_funcs(("getrf",), (A,)) | ||
| LU, p, info = getrf(A, overwrite_a=self.overwrite_a) | ||
| if info < 0: | ||
| raise ValueError( | ||
| f"illegal value in {-info}th argument of internal getrf (lu_factor)" | ||
| ) | ||
| if info > 0: | ||
| warnings.warn( | ||
| f"Diagonal number {info} is exactly zero. Singular matrix.", | ||
| LinAlgWarning, | ||
| stacklevel=2, | ||
| ) | ||
|
Comment on lines
+723
to
+732
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. As above |
||
|
|
||
| outputs[0][0] = LU | ||
| outputs[1][0] = p | ||
|
|
@@ -865,15 +896,51 @@ def __init__(self, *, unit_diagonal=False, **kwargs): | |
|
|
||
| def perform(self, node, inputs, outputs): | ||
| A, b = inputs | ||
| outputs[0][0] = scipy_linalg.solve_triangular( | ||
| A, | ||
| b, | ||
| lower=self.lower, | ||
| trans=0, | ||
| unit_diagonal=self.unit_diagonal, | ||
| check_finite=self.check_finite, | ||
| overwrite_b=self.overwrite_b, | ||
| ) | ||
|
|
||
| if self.check_finite and not (np.isfinite(A).all() and np.isfinite(b).all()): | ||
| raise ValueError("array must not contain infs or NaNs") | ||
|
|
||
| if len(A.shape) != 2 or A.shape[0] != A.shape[1]: | ||
| raise ValueError("expected square matrix") | ||
|
|
||
| if A.shape[0] != b.shape[0]: | ||
| raise ValueError(f"shapes of a {A.shape} and b {b.shape} are incompatible") | ||
|
|
||
| (trtrs,) = get_lapack_funcs(("trtrs",), (A, b)) | ||
|
|
||
| # Quick return for empty arrays | ||
| if b.size == 0: | ||
| outputs[0][0] = np.empty_like(b, dtype=trtrs.dtype) | ||
| return | ||
|
|
||
| if A.flags["F_CONTIGUOUS"]: | ||
| x, info = trtrs( | ||
| A, | ||
| b, | ||
| overwrite_b=self.overwrite_b, | ||
| lower=self.lower, | ||
| trans=0, | ||
| unitdiag=self.unit_diagonal, | ||
| ) | ||
| else: | ||
| # transposed system is solved since trtrs expects Fortran ordering | ||
| x, info = trtrs( | ||
| A.T, | ||
| b, | ||
| overwrite_b=self.overwrite_b, | ||
| lower=not self.lower, | ||
| trans=1, | ||
| unitdiag=self.unit_diagonal, | ||
| ) | ||
|
|
||
| if info > 0: | ||
| raise LinAlgError( | ||
| f"singular matrix: resolution failed at diagonal {info-1}" | ||
| ) | ||
| elif info < 0: | ||
| raise ValueError(f"illegal value in {-info}-th argument of internal trtrs") | ||
|
Comment on lines
+936
to
+941
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. As above |
||
|
|
||
| outputs[0][0] = x | ||
|
|
||
| def L_op(self, inputs, outputs, output_gradients): | ||
| res = super().L_op(inputs, outputs, output_gradients) | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
To be precise, we don't need to check ndims, but I guess it's fine.